Author:
Benz Dominik C,Tarokh Leila,Achermann Peter,Loughran Sarah P
Abstract
Abstract
Background
The human waking EEG spectrum shows high heritability and stability and, despite maturational cortical changes, high test-retest reliability in children and teens. These phenomena have also been shown to be region specific. We examined the stability of the morphology of the wake EEG spectrum in children aged 11 to 13 years recorded over weekly intervals and assessed whether the waking EEG spectrum in children may also be trait-like. Three minutes of eyes open and three minutes of eyes closed waking EEG was recorded in 22 healthy children once a week for three consecutive weeks. Eyes open and closed EEG power density spectra were calculated for two central (C3LM and C4LM) and two occipital (O1LM and O2LM) derivations. A hierarchical cluster analysis was performed to determine whether the morphology of the waking EEG spectrum between 1 and 20 Hz is trait-like. We also examined the stability of the alpha peak using an ANOVA.
Results
The morphology of the EEG spectrum recorded from central derivations was highly stable and unique to an individual (correctly classified in 85% of participants), while the EEG recorded from occipital derivations, while stable, was much less unique across individuals (correctly classified in 42% of participants). Furthermore, our analysis revealed an increase in alpha peak height concurrent with a decline in the frequency of the alpha peak across weeks for occipital derivations. No changes in either measure were observed in the central derivations.
Conclusions
Our results indicate that across weekly recordings, power spectra at central derivations exhibit more “trait-like” characteristics than occipital derivations. These results may be relevant for future studies searching for links between phenotypes, such as psychiatric diagnoses, and the underlying genes (i.e., endophenotypes) by suggesting that such studies should make use of more anterior rather than posterior EEG derivations.
Publisher
Springer Science and Business Media LLC
Subject
Cellular and Molecular Neuroscience,General Neuroscience
Reference25 articles.
1. Stassen HH, Bomben G, Propping P: Genetic aspects of the EEG: an investigation into the within-pair similarity of monozygotic and dizygotic twins with a new method of analysis. Electroencephalogr Clin Neurophysiol. 1987, 66: 489-501. 10.1016/0013-4694(87)90095-2.
2. Van Baal GC, De Geus EJ, Boomsma DI: Genetic architecture of EEG power spectra in early life. Electroencephalogr Clin Neurophysiol. 1996, 98: 502-514. 10.1016/0013-4694(96)95601-1.
3. Smit DJ, Posthuma D, Boomsma DI, Geus EJ: Heritability of background EEG across the power spectrum. Psychophysiology. 2005, 42: 691-697. 10.1111/j.1469-8986.2005.00352.x.
4. van Beijsterveldt CE, Molenaar PC, de Geus EJ, Boomsma DI: Heritability of human brain functioning as assessed by electroencephalography. Am J Hum Genet. 1996, 58: 562-573.
5. Zietsch BP, Hansen JL, Hansell NK, Geffen GM, Martin NG, Wright MJ: Common and specific genetic influences on EEG power bands delta, theta, alpha, and beta. Biol Psychol. 2007, 75: 154-164. 10.1016/j.biopsycho.2007.01.004.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献