Convulsant bicuculline modifies CNS muscarinic receptor affinity

Author:

Schneider Patricia G,Rodríguez de Lores Arnaiz Georgina

Abstract

Abstract Background Previous work from this laboratory has shown that the administration of the convulsant drug 3-mercaptopropionic acid (MP), a GAD inhibitor, modifies not only GABA synthesis but also binding of the antagonist [3H]-quinuclidinyl benzilate ([3H]-QNB) to central muscarinic receptors, an effect due to an increase in affinity without modifications in binding site number. The cholinergic system has been implicated in several experimental epilepsy models and the ability of acetylcholine to regulate neuronal excitability in the neocortex is well known. To study the potential relationship between GABAergic and cholinergic systems with seizure activity, we analyzed the muscarinic receptor after inducing seizure by bicuculline (BIC), known to antagonize the GABA-A postsynaptic receptor subtype. Results We analyzed binding of muscarinic antagonist [3H]-QNB to rat CNS membranes after i.p. administration of BIC at subconvulsant (1.0 mg/kg) and convulsant (7.5 mg/kg) doses. Subconvulsant BIC dose failed to develop seizures but produced binding alteration in the cerebellum and hippocampus with roughly 40% increase and 10% decrease, respectively. After convulsant BIC dose, which invariably led to generalized tonic-clonic seizures, binding increased 36% and 15% to cerebellar and striatal membranes respectively, but decreased 12% to hippocampal membranes. Kd value was accordingly modified: with the subconvulsant dose it decreased 27% in cerebellum whereas it increased 61% in hippocampus; with the convulsant dose, Kd value decreased 33% in cerebellum but increased 85% in hippocampus. No change in receptor number site was found, and Hill number was invariably close to unity. Conclusion Results indicate dissimilar central nervous system area susceptibility of muscarinic receptor to BIC. Ligand binding was modified not only by a convulsant BIC dose but also by a subconvulsant dose, indicating that changes are not attributable to the seizure process itself. Findings support the notion that the muscarinic receptors play a major role in experimental epilepsy and provide a new example of differential neuronal plasticity.

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,General Neuroscience

Reference40 articles.

1. Wasterlain CG, Farber DB, Fairchild MD: Synaptic mechanisms in the kindled epileptic focus: a speculative synthesis. Advances in Neurology. Edited by: Delgado-Escueta AV, Ward AA Jr, Woodbury DM, Porter RJ. 1986, New York: Raven Press, 411-433.

2. Cox CL, Metherate R, Ashe JH: Modulation of cellular excitability in neocortex: muscarinic receptor and second messenger-mediated actions of acetylcholine. Synapse. 1994, 16: 123-136. 10.1002/syn.890160206.

3. Peterson SL, Armstrong JJ: Muscarinic receptors mediate carbachol-induced inhibition of maximal electroshock seizures in the nucleus reticularis pontis oralis. Epilepsia. 1999, 40: 20-25. 10.1111/j.1528-1157.1999.tb01983.x.

4. Meldrum BS: The role of glutamate in epilepsy and other CNS disorders. Neurology. 1994, 44: S14-S23.

5. Meldrum BS: Neurotransmission in epilepsy. Epilepsia. 1995, 36: 30-35. 10.1111/j.1528-1157.1995.tb01649.x.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3