Author:
Schneider Patricia G,Rodríguez de Lores Arnaiz Georgina
Abstract
Abstract
Background
Previous work from this laboratory has shown that the administration of the convulsant drug 3-mercaptopropionic acid (MP), a GAD inhibitor, modifies not only GABA synthesis but also binding of the antagonist [3H]-quinuclidinyl benzilate ([3H]-QNB) to central muscarinic receptors, an effect due to an increase in affinity without modifications in binding site number. The cholinergic system has been implicated in several experimental epilepsy models and the ability of acetylcholine to regulate neuronal excitability in the neocortex is well known. To study the potential relationship between GABAergic and cholinergic systems with seizure activity, we analyzed the muscarinic receptor after inducing seizure by bicuculline (BIC), known to antagonize the GABA-A postsynaptic receptor subtype.
Results
We analyzed binding of muscarinic antagonist [3H]-QNB to rat CNS membranes after i.p. administration of BIC at subconvulsant (1.0 mg/kg) and convulsant (7.5 mg/kg) doses. Subconvulsant BIC dose failed to develop seizures but produced binding alteration in the cerebellum and hippocampus with roughly 40% increase and 10% decrease, respectively. After convulsant BIC dose, which invariably led to generalized tonic-clonic seizures, binding increased 36% and 15% to cerebellar and striatal membranes respectively, but decreased 12% to hippocampal membranes. Kd value was accordingly modified: with the subconvulsant dose it decreased 27% in cerebellum whereas it increased 61% in hippocampus; with the convulsant dose, Kd value decreased 33% in cerebellum but increased 85% in hippocampus. No change in receptor number site was found, and Hill number was invariably close to unity.
Conclusion
Results indicate dissimilar central nervous system area susceptibility of muscarinic receptor to BIC. Ligand binding was modified not only by a convulsant BIC dose but also by a subconvulsant dose, indicating that changes are not attributable to the seizure process itself. Findings support the notion that the muscarinic receptors play a major role in experimental epilepsy and provide a new example of differential neuronal plasticity.
Publisher
Springer Science and Business Media LLC
Subject
Cellular and Molecular Neuroscience,General Neuroscience
Reference40 articles.
1. Wasterlain CG, Farber DB, Fairchild MD: Synaptic mechanisms in the kindled epileptic focus: a speculative synthesis. Advances in Neurology. Edited by: Delgado-Escueta AV, Ward AA Jr, Woodbury DM, Porter RJ. 1986, New York: Raven Press, 411-433.
2. Cox CL, Metherate R, Ashe JH: Modulation of cellular excitability in neocortex: muscarinic receptor and second messenger-mediated actions of acetylcholine. Synapse. 1994, 16: 123-136. 10.1002/syn.890160206.
3. Peterson SL, Armstrong JJ: Muscarinic receptors mediate carbachol-induced inhibition of maximal electroshock seizures in the nucleus reticularis pontis oralis. Epilepsia. 1999, 40: 20-25. 10.1111/j.1528-1157.1999.tb01983.x.
4. Meldrum BS: The role of glutamate in epilepsy and other CNS disorders. Neurology. 1994, 44: S14-S23.
5. Meldrum BS: Neurotransmission in epilepsy. Epilepsia. 1995, 36: 30-35. 10.1111/j.1528-1157.1995.tb01649.x.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献