The neuroblast and angioblast chemotaxic factor SDF-1 (CXCL12) expression is briefly up regulated by reactive astrocytes in brain following neonatal hypoxic-ischemic injury

Author:

Miller Jason T,Bartley John H,Wimborne Hereward JC,Walker Aisha L,Hess David C,Hill William D,Carroll James E

Abstract

Abstract Background Stromal cell-derived factor 1 (SDF-1 or CXCL12) is chemotaxic for CXCR4 expressing bone marrow-derived cells. It functions in brain embryonic development and in response to ischemic injury in helping guide neuroblast migration and vasculogenesis. In experimental adult stroke models SDF-1 is expressed perivascularly in the injured region up to 30 days after the injury, suggesting it could be a therapeutic target for tissue repair strategies. We hypothesized that SDF-1 would be expressed in similar temporal and spatial patterns following hypoxic-ischemic (HI) injury in neonatal brain. Results Twenty-five 7-day-old C57BL/J mice underwent HI injury. SDF-1 expression was up regulated up to 7 days after the injury but not at the later time points. The chief sites of SDF-1 up regulation were astrocytes, their foot processes along blood vessels and endothelial cells. Conclusion The localization of SDF-1 along blood vessels in the HI injury zone suggests that these perivascular areas are where chemotaxic signaling for cellular recruitment originates and that reactive astrocytes are major mediators of this process. The associated endothelium is likely to be the site for vascular attachment and diapedesis of CXCR4 receptor expressing cells to enter the injured tissue. Here we show that, relative to adults, neonates have a significantly smaller window of opportunity for SDF-1 based vascular chemotaxic recruitment of bone marrow-derived cells. Therefore, without modification, following neonatal HI injury there is only a narrow period of time for endogenous SDF-1 mediated chemotaxis and recruitment of reparative cells, including exogenously administered stem/progenitor cells.

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,General Neuroscience

Cited by 131 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3