Author:
Aguilar Salegio Ernesto A,Pollard Anthony N,Smith Malcolm,Zhou Xin-Fu
Abstract
Abstract
Background
Injury to the peripheral branch of dorsal root ganglia (DRG) neurons prior to injury to the central nervous system (CNS) DRG branch results in the regeneration of the central branch. The exact mechanism mediating this regenerative trigger is not fully understood. It has been proposed that following peripheral injury, the intraganglionic inflammatory response by macrophage cells plays an important role in the pre-conditioning of injured CNS neurons to regenerate. In this study, we investigated whether the presence of macrophage cells is crucial for this type of regeneration to occur. We used a clodronate liposome technique to selectively and temporarily deplete these cells during the conditioning phase of DRG neurons.
Results
Retrograde and anterograde tracing results indicated that in macrophage-depleted animals, the regenerative trigger characteristic of pre-conditioned DRG neurons was abolished as compared to injury matched-control animals. In addition, depletion of macrophage cells led to: (i) a reduction in macrophage infiltration into the CNS compartment even after cellular repopulation, (ii) astrocyte up-regulation at rostral regions and down-regulation in brain derived neurotrophic factor (BDNF) concentration in the serum.
Conclusion
Activation of macrophage cells in response to the peripheral nerve injury is essential for the enhanced regeneration of ascending sensory neurons.
Publisher
Springer Science and Business Media LLC
Subject
Cellular and Molecular Neuroscience,General Neuroscience
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献