Author:
Benton Jeanne L,Zhang Yi,Kirkhart Colleen R,Sandeman David C,Beltz Barbara S
Abstract
Abstract
Background
Adult neurogenesis, the production and integration of new neurons into circuits in the brains of adult animals, is a common feature of a variety of organisms, ranging from insects and crustaceans to birds and mammals. In the mammalian brain the 1st-generation neuronal precursors, the astrocytic stem cells, reside in neurogenic niches and are reported to undergo self-renewing divisions, thereby providing a source of new neurons throughout an animal's life. In contrast, our work shows that the 1st-generation neuronal precursors in the crayfish (Procambarus clarkii) brain, which also have glial properties and lie in a neurogenic niche resembling that of vertebrates, undergo geometrically symmetrical divisions and both daughters appear to migrate away from the niche. However, in spite of this continuous efflux of cells, the number of neuronal precursors in the crayfish niche continues to expand as the animals grow and age. Based on these observations we have hypothesized that (1) the neuronal stem cells in the crayfish brain are not self-renewing, and (2) a source external to the neurogenic niche must provide cells that replenish the stem cell pool.
Results
In the present study, we tested the first hypothesis using sequential double nucleoside labeling to track the fate of 1st- and 2nd-generation neuronal precursors, as well as testing the size of the labeled stem cell pool following increasing incubation times in 5-bromo-2'-deoxyuridine (BrdU). Our results indicate that the 1st-generation precursor cells in the crayfish brain, which are functionally analogous to neural stem cells in vertebrates, are not a self-renewing population. In addition, these studies establish the cycle time of these cells. In vitro studies examining the second hypothesis show that Cell Tracker™ Green-labeled cells extracted from the hemolymph, but not other tissues, are attracted to and incorporated into the neurogenic niche, a phenomenon that appears to involve serotonergic mechanisms.
Conclusions
These results challenge our current understanding of self-renewal capacity as a defining characteristic of all adult neuronal stem cells. In addition, we suggest that in crayfish, the hematopoietic system may be a source of cells that replenish the niche stem cell pool.
Publisher
Springer Science and Business Media LLC
Subject
Cellular and Molecular Neuroscience,General Neuroscience
Reference58 articles.
1. Kempermann G: Adult Neurogenesis: Stem Cells and Neuronal Development in the Adult Brain. 2006, Oxford University Press
2. Beltz BS, Sandeman DC: Regulation of life-long neurogenesis in the decapod crustacean brain. Arth Struc Dev. 2003, 32: 39-60. 10.1016/S1467-8039(03)00038-0.
3. Jang MH, Song H, Ming GI: Regulation of adult neurogenesis by neurotransmitters. Adult Neurogenesis. Edited by: Gage FH, Kempermann G, Song H. 2008, New York: Cold Spring Harbor Laboratory Press, 397-423.
4. Abrous DN, Wojtowicz JM: Neurogenesis and hippocampal memory system. Adult Neurogenesis. Edited by: Gage FH, Kempermann G, Song H. 2008, New York: Cold Spring Harbor Laboratory Press, 445-461.
5. Brundin P, Winkler J, Masliah E: Adult neurogenesis and neurodegenerative diseases. Adult Neurogenesis. Edited by: Gage FH, Kempermann G, Song H. 2008, New York, Cold Spring Harbor Laboratory Press, 503-533. (2008)