Author:
Borich Michael R,Mang Cameron,Boyd Lara A
Abstract
Abstract
Background
Complete recovery of motor function after stroke is rare with deficits persisting into the chronic phase of recovery. Diffusion tensor imaging (DTI) can evaluate relationships between white matter microstructure and motor function after stroke. The objective of this investigation was to characterize microstructural fiber integrity of motor and sensory regions of the corpus callosum (CC) and descending motor outputs of the posterior limb of the internal capsule (PLIC) in individuals with chronic stroke and evaluate the relationships between white matter integrity and motor function.
Results
Standardized measures of upper extremity motor function were measured in thirteen individuals with chronic stroke. Manual dexterity was assessed in thirteen healthy age-matched control participants. DTI scans were completed for each participant. Fractional anisotropy (FA) of a cross-section of sensory and motor regions of the CC and the PLIC bilaterally were quantified. Multivariate analysis of variance evaluated differences between stroke and healthy groups. Correlational analyses were conducted for measures of motor function and FA. The stroke group exhibited reduced FA in the sensory (p = 0.001) region of the CC, contra- (p = 0.032) and ipsilesional (p = 0.001) PLIC, but not the motor region of the CC (p = 0.236). In the stroke group, significant correlations between contralesional PLIC FA and level of physical impairment (p = 0.005), grip strength (p = 0.006) and hand dexterity (p = 0.036) were observed.
Conclusions
Microstructural status of the sensory region of the CC is reduced in chronic stroke. Future work is needed to explore relationships between callosal sensorimotor fiber integrity and interhemispheric interactions post-stroke. In addition, contralesional primary motor output tract integrity is uniquely and closely associated with multiple dimensions of motor recovery in the chronic phase of stroke suggesting it may be an important biomarker of overall motor recovery.
Publisher
Springer Science and Business Media LLC
Subject
Cellular and Molecular Neuroscience,General Neuroscience
Reference38 articles.
1. Gresham GE, Duncan PW, Stason WB, Adams HP, Adelman AM, Alexander DN, Bishop DS, Diller L, Donaldson NE, Granger CV, Holland AL, Kellyhayes M, McDowell FH, Phipps MA, Roth EJ, Siebens HC, Tarvin GA, Trombly CA: Post-stroke rehabilitation - assessment, referral and patient management. Am Fam Physician. 1995, 52 (2): 461-470.
2. Boyd LA, Vidoni ED, Wessel BD: Motor learning after stroke: is skill acquisition a prerequisite for contralesional neuroplastic change?. Neurosci Lett. 2010, 482 (1): 21-25. 10.1016/j.neulet.2010.06.082.
3. Carey JR, Kimberley TJ, Lewis SM, Auerbach EJ, Dorsey L, Rundquist P, Ugurbil K: Analysis of fMRI and finger tracking training in subjects with chronic stroke. Brain. 2002, 125 (Pt 4): 773-788.
4. Kimberley TJ, Lewis SM, Auerbach EJ, Dorsey LL, Lojovich JM, Carey JR: Electrical stimulation driving functional improvements and cortical changes in subjects with stroke. Exp Brain Res. 2004, 154 (4): 450-460. 10.1007/s00221-003-1695-y.
5. Meehan SK, Randhawa B, Wessel B, Boyd LA: Implicit sequence-specific motor learning after subcortical stroke is associated with increased prefrontal brain activations: an fMRI study. Hum Brain Mapp. 2011, 32 (2): 290-303. 10.1002/hbm.21019.
Cited by
59 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献