Simvastatin protects auditory hair cells from gentamicin-induced toxicity and activates Akt signaling in vitro

Author:

Brand Yves,Setz Cristian,Levano Soledad,Listyo Alwin,Chavez Eduardo,Pak Kwang,Sung Michael,Radojevic Vesna,Ryan Allen F,Bodmer Daniel

Abstract

Abstract Background Inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, known as statins, are commonly used as cholesterol-lowering drugs. During the past decade, evidence has emerged that statins also have neuroprotective effects. Research in the retina has shown that simvastatin, a commonly used statin, increases Akt phosphorylation in vivo, indicating that the PI3K/Akt pathway contributes to the protective effects achieved. While research about neuroprotective effects have been conducted in several systems, the effects of statins on the inner ear are largely unknown. Results We evaluated whether the 3-hydroxy-3-methylglutaryl-coenzyme A reductase is present within the rat cochlea and whether simvastatin is able to protect auditory hair cells from gentamicin-induced apoptotic cell death in a in vitro mouse model. Furthermore, we evaluated whether simvastatin increases Akt phosphorylation in the organ of Corti. We detected 3-hydroxy-3-methylglutaryl-coenzyme A reductase mRNA in organ of Corti, spiral ganglion, and stria vascularis by reverse transcriptase-polymerase chain reaction (RT-PCR). Moreover, we observed a dose-dependent and significant reduction of hair cell loss in organs of Corti treated with simvastatin in addition to gentamicin, as compared to samples treated with gentamicin alone. The protective effect of simvastatin was reversed by addition of mevalonate, a downstream metabolite blocked by simvastatin, demonstrating the specificity of protection. Finally, Western blotting showed an increase in organ of Corti Akt phosphorylation after simvastatin treatment in vitro. Conclusion These results suggest a neuroprotective effect of statins in the inner ear, mediated by reduced 3-hydroxy-3-methylglutaryl-coenzyme A reductase metabolism and Akt activation.

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,General Neuroscience

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3