Exploratory behaviour in NO-dependent cyclase mutants of Drosophila shows defects in coincident neuronal signalling

Author:

Tinette Sylvette,Zhang Lixing,Garnier Amélie,Engler Gilbert,Tares Sophie,Robichon Alain

Abstract

Abstract Background Drosophila flies explore the environment very efficiently in order to colonize it. They explore collectively, not individually, so that when a few land on a food spot, they attract the others by signs. This behaviour leads to aggregation of individuals and optimizes the screening of mates and egg-laying on the most favourable food spots. Results Flies perform cycles of exploration/aggregation depending on the resources of the environment. This behavioural ecology constitutes an excellent model for analyzing simultaneous processing of neurosensory information. We reasoned that the decision of flies to land somewhere in order to achieve aggregation is based on simultaneous integration of signals (visual, olfactory, acoustic) during their flight. On the basis of what flies do in nature, we designed laboratory tests to analyze the phenomenon of neuronal coincidence. We screened many mutants of genes involved in neuronal metabolism and the synaptic machinery. Conclusion Mutants of NO-dependent cyclase show a specifically-marked behaviour phenotype, but on the other hand they are associated with moderate biochemical defects. We show that these mutants present errors in integrative and/or coincident processing of signals, which are not reducible to the functions of the peripheral sensory cells.

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,General Neuroscience

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3