Author:
Cao Zhengyu,Gerwick William H,Murray Thomas F
Abstract
Abstract
Background
Antillatoxin (ATX) is a structurally unique lipopeptide produced by the marine cyanobacterium Lyngbya majuscula. ATX activates voltage-gated sodium channel α-subunits at an undefined recognition site and stimulates sodium influx in neurons. However, the pharmacological properties and selectivity of ATX on the sodium channel α-subunits were not fully characterized.
Results
In this study, we characterized the pharmacological properties and selectivity of ATX in cells heterologously expressing rNav1.2, rNav1.4 or rNav1.5 α-subunits by using the Na+ selective fluorescent dye, sodium-binding benzofuran isophthalate. ATX produced sodium influx in cells expressing each sodium channel α-subunit, whereas two other sodium channel activators, veratridine and brevetoxin-2, were without effect. The ATX potency at rNav1.2, rNav1.4 and rNav1.5 did not differ significantly. Similarly, there were no significant differences in the efficacy for ATX-induced sodium influx between rNav1.2, rNav1.4 and rNav1.5 α-subunits. ATX also produced robust Ca2+ influx relative to other sodium channel activators in the calcium-permeable DEAA mutant of rNav1.4 α-subunit. Finally, we demonstrated that the 8-demethyl-8,9-dihydro-antillatoxin analog was less efficacious and less potent in stimulating sodium influx.
Conclusions
ATX displayed a unique efficacy with respect to stimulation of sodium influx in cells expressing rNav1.2, rNav1.4 and rNav1.5 α-subunits. The efficacy of ATX was distinctive inasmuch as it was not shared by activators of neurotoxin sites 2 and 5 on VGSC α-subunits. Given the unique pharmacological properties of ATX interaction with sodium channel α-subunits, decoding the molecular determinants and mechanism of action of antillatoxin may provide further insight into sodium channel gating mechanisms.
Publisher
Springer Science and Business Media LLC
Subject
Cellular and Molecular Neuroscience,General Neuroscience
Reference33 articles.
1. Tidgewell KC, Clark BT, Gerwick WH: The natural products chemistry of cyanobacteria. Comprehensive natural products chemistry. Edited by: Moore B, Crews P. 2010, Elsevier: Oxford, UK, 141-188. full_text. 2
2. Luesch H, Moore RE, Paul VJ, Mooberry SL, Corbett TH: Isolation of dolastatin 10 from the marine cyanobacterium Symploca species VP642 and total stereochemistry and biological evaluation of its analogue symplostatin 1. J Nat Prod. 2001, 64 (7): 907-910. 10.1021/np010049y.
3. Blokhin AV, Yoo HD, Geralds RS, Nagle DG, Gerwick WH, Hamel E: Characterization of the interaction of the marine cyanobacterial natural product curacin A with the colchicine site of tubulin and initial structure-activity studies with analogues. Mol Pharmacol. 1995, 48 (3): 523-531.
4. Marquez BL, Watts KS, Yokochi A, Roberts MA, Verdier-Pinard P, Jimenez JI, Hamel E, Scheuer PJ, Gerwick WH: Structure and absolute stereochemistry of hectochlorin, a potent stimulator of actin assembly. J Nat Prod. 2002, 65 (6): 866-871. 10.1021/np0106283.
5. LePage KT, Goeger D, Yokokawa F, Asano T, Shioiri T, Gerwick WH, Murray TF: The neurotoxic lipopeptide kalkitoxin interacts with voltage-sensitive sodium channels in cerebellar granule neurons. Toxicol Lett. 2005, 158 (2): 133-139. 10.1016/j.toxlet.2005.03.007.
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献