Abstract
AbstractThe abundance of courses available in a university often overwhelms students as they must select courses that are relevant to their academic interests and satisfy their requirements. A large number of existing studies in course recommendation systems focus on the accuracy of prediction to show students the most relevant courses with little consideration on interactivity and user perception. However, recent work has highlighted the importance of user-perceived aspects of recommendation systems, such as transparency, controllability, and user satisfaction. This paper introduces CourseQ, an interactive course recommendation system that allows students to explore courses by using a novel visual interface so as to improve transparency and user satisfaction of course recommendations. We describe the design concepts, interactions, and algorithm of the proposed system. A within-subject user study (N=32) was conducted to evaluate our system compared to a baseline interface without the proposed interactive visualization. The evaluation results show that our system improves many user-centric metrics including user acceptance and understanding of the recommendation results. Furthermore, our analysis of user interaction behaviors in the system indicates that CourseQ could help different users with their course-seeking tasks. Our results and discussions highlight the impact of visual and interactive features in course recommendation systems and inform the design of future recommendation systems for higher education.
Funder
Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Subject
Management of Technology and Innovation,Media Technology,Education,Social Psychology
Reference61 articles.
1. Aher, S.B., & Lobo, L. (2013). Combination of machine learning algorithms for recommendation of courses in e-learning system based on historical data. Knowledge-Based Systems, 51, 1–14.
2. Alkan, O., Daly, E.M., Botea, A., Valente, A.N., Pedemonte, P. (2019). Where can my career take me? harnessing dialogue for interactive career goal recommendations. In Proceedings of the 24th International Conference on Intelligent User Interfaces, (pp. 603–613).
3. Andjelkovic, I., Parra, D., O’Donovan, J. (2016). Moodplay: Interactive mood-based music discovery and recommendation. In Proceedings of the 2016 Conference on User Modeling Adaptation and Personalization, (pp. 275–279).
4. Andjelkovic, I., Parra, D., O’Donovan, J. (2019). Moodplay: Interactive music recommendation based on artists’ mood similarity. International Journal of Human-Computer Studies, 121, 142–159.
5. Bendakir, N., & Aïmeur, E. (2006). Using association rules for course recommendation. In Proceedings of the AAAI Workshop on Educational Data Mining, (Vol. 3, pp. 1–10).
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献