Tibiofemoral articulation and axial tibial rotation of the knee after a cruciate retaining total knee arthroplasty

Author:

Li GuoanORCID,Zhou Chaochao,Li Sophia,Yu Jia,Foster Timothy,Bedair Hany

Abstract

Abstract Purpose Numerous research has reported that total knee arthroplasty (TKA) cannot reproduce axial tibial rotations of normal knees. The objective of this study was to measure the tibiofemoral articular contact motions and axial tibial rotations of TKA knees to investigate the mechanism causing the knee kinematics change of after TKAs. Methods Eleven patients with unilateral cruciate retaining (CR) TKA were tested for measurements of knee motion during a weight-bearing flexion from 0° to 105° using an imaging technique. The tibiofemoral contact kinematics were determined using the contact points on medial and lateral surfaces of the tibia and femoral condyles. Axial tibial rotations were calculated using the differences between the medial and lateral articulation distances on the femoral condyles and tibial surfaces at each flexion interval of 15°. Results On femoral condyles, articular contact distances are consistently longer on the medial than on the lateral sides (p < 0.05) up to 60° of flexion, corresponding to internal tibial rotations (e.g., 1.3° ± 1.0° at 15–30° interval). On tibial surfaces, the articular contact point on the medial side moved more posteriorly than on the lateral side at low flexion angles, corresponding to external tibial rotations (e.g., −1.4° ± 1.8° at 15–30° interval); and more anteriorly than on the lateral sides at mid-range flexion, corresponding to internal tibial rotations (e.g., 0.8° ± 1.7° at 45–60° interval). At higher flexion, articular motions on both femoral condyles and tibial surfaces caused minimal changes in tibial rotations. Conclusions These results indicate that the axial tibial rotations of these TKA knees were mainly attributed to asymmetric articulations on the medial and lateral femoral condyles and tibial surfaces. The data can help understand the mechanisms causing axial tibial rotations of TKA knees and help improve implant designs for restoration of normal knee kinematics.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3