Demographic data is more predictive of component size than digital radiographic templating in total knee arthroplasty

Author:

Wallace Stephen J.ORCID,Murphy Michael P.,Schiffman Corey J.,Hopkinson William J.,Brown Nicholas M.

Abstract

Abstract Background Preoperative radiographic templating for total knee arthroplasty (TKA) has been shown to be inaccurate. Patient demographic data, such as gender, height, weight, age, and race, may be more predictive of implanted component size in TKA. Materials and methods A multivariate linear regression model was designed to predict implanted femoral and tibial component size using demographic data along a consecutive series of 201 patients undergoing index TKA. Traditional, two-dimensional, radiographic templating was compared to demographic-based regression predictions on a prospective 181 consecutive patients undergoing index TKA in their ability to accurately predict intraoperative implanted sizes. Surgeons were blinded of any predictions. Results Patient gender, height, weight, age, and ethnicity/race were predictive of implanted TKA component size. The regression model more accurately predicted implanted component size compared to radiographically templated sizes for both the femoral (P = 0.04) and tibial (P < 0.01) components. The regression model exactly predicted femoral and tibial component sizes in 43.7 and 43.7% of cases, was within one size 90.1 and 95.6% of the time, and was within two sizes in every case. Radiographic templating exactly predicted 35.4 and 36.5% of cases, was within one size 86.2 and 85.1% of the time, and varied up to four sizes for both the femoral and tibial components. The regression model averaged within 0.66 and 0.61 sizes, versus 0.81 and 0.81 sizes for radiographic templating for femoral and tibial components. Conclusions A demographic-based regression model was created based on patient-specific demographic data to predict femoral and tibial TKA component sizes. In a prospective patient series, the regression model more accurately and precisely predicted implanted component sizes compared to radiographic templating. Level of evidence Prospective cohort, level II.

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3