Micro- and mesozooplankton at the edges of coastal tropical reefs (Tamandaré, Brazil)

Author:

Brito-Lolaia Morgana,Santos Gleice S.,Neumann-Leitão Sigrid,Schwamborn RalfORCID

Abstract

AbstractTropical reef ecosystems are generally considered to be sinks of marine zooplankton, mainly due to the predation by scleractinian corals and other planktivores. The present study aims to evaluate the zooplankton community of a coastal reef in two specific environments: the reef edge and open-water channels between patch reefs. Sampling was carried out at two patch reefs that border the Tamandaré coastal lagoon system (Pernambuco State, Brazil). Two passive stationary nets (64 μm mesh size) were used: the Reef Edge Net (REN) and the Channel Midwater Neuston Net (CMNN). Sampling was performed simultaneously at both reefs during eight nocturnal sampling campaigns, always at new moon ebb tides. Zooplankton was classified by “origin” (estuarine, reef, neritic and neritic/estuarine). During all campaigns and at both sites, a significant buildup of zooplankton at the reefs was observed. Reef edges showed significantly higher abundance (77,579 ± 73,985 ind. m−3) and biomass (48.9 ± 45.5 mg C m−3) of zooplankton compared to open-water channels (9982 ± 11,427 ind. m−3 and 11.4 ± 21.9 mg C m−3, respectively). A total of 65 taxonomic groups were identified. Copepods were the most abundant group with a contribution of 69% for total zooplankton abundance, followed by foraminiferans, gastropod veligers, appendicularians, cirripedians nauplii, and polychaete larvae. Copepods from neritic/estuarine environments dominated the reef edges in both relative abundance and relative biomass (91% and 88%, respectively). The unexpectedly high abundance of copepods and other holoplankton at the reef edges, when compared to Indo-Pacific and Caribbean reefs, is probably due to very low cover of corals and other zooplanktivorous sessile animals (< 0.2%) on these coastal reefs, which leads to a very low predation mortality for zooplankters. Also, we propose that the reduced water column above the reef top leads to a buildup of very high densities in these environments.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Springer Science and Business Media LLC

Subject

Aquatic Science,Oceanography

Reference71 articles.

1. Emery AR. Preliminary observations on coral reef plankton. Limnol Oceanogr. 1968;13(2):293–303.

2. Ikeda T. Nutritional ecology of marine zooplankton. Mem Fac Fish Hokkaido Univ. 1974;22(1):1–97.

3. Porter J. Zooplankton feeding by the Caribbean reef-building coral Montastrea cavernosa. In: Proc 2nd Int Symp on Coral Reefs, Great Barrier Reef Committee on board the MV Marco Polo cruising in the waters of the Great Barrier Reef Province, 1974, Australia. 1974. p. 111–25.

4. Hamner WM, Jones MS, Carleton JH, Hauri IR, Williams DMcB. Zooplankton, planktivorous fish, and water currents on a windward reef face—Great Barrier-Reef, Australia. Bull Mar Sci. 1988;42(3):459–79.

5. Hamner WM, Colin PL, Hamner PP. Export-import dynamics of zooplankton on a coral reef in Palau. Mar Ecol Prog Ser. 2007;334:83–92.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3