Author:
Konstantinopoulos Panagiotis A,Fountzilas Elena,Pillay Kamana,Zerbini Luiz F,Libermann Towia A,Cannistra Stephen A,Spentzos Dimitrios
Abstract
Abstract
Background
We performed a time-course microarray experiment to define the transcriptional response to carboplatin in vitro, and to correlate this with clinical outcome in epithelial ovarian cancer (EOC). RNA was isolated from carboplatin and control-treated 36M2 ovarian cancer cells at several time points, followed by oligonucleotide microarray hybridization. Carboplatin induced changes in gene expression were assessed at the single gene as well as at the pathway level. Clinical validation was performed in publicly available microarray datasets using disease free and overall survival endpoints.
Results
Time-course and pathway analyses identified 317 genes and 40 pathways (designated time-course and pathway signatures) deregulated following carboplatin exposure. Both types of signatures were validated in two separate platinum-treated ovarian and NSCLC cell lines using published microarray data. Expression of time-course and pathway signature genes distinguished between patients with unfavorable and favorable survival in two independent ovarian cancer datasets. Among the pathways most highly induced by carboplatin in vitro, the NRF2, NF-kB, and cytokine and inflammatory response pathways were also found to be upregulated prior to chemotherapy exposure in poor prognosis tumors.
Conclusion
Dynamic assessment of gene expression following carboplatin exposure in vitro can identify both genes and pathways that are correlated with clinical outcome. The functional relevance of this observation for better understanding the mechanisms of drug resistance in EOC will require further evaluation.
Publisher
Springer Science and Business Media LLC
Subject
Genetics (clinical),Genetics
Reference37 articles.
1. Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ: Cancer statistics, 2007. CA Cancer J Clin. 2007, 57 (1): 43-66.
2. Cannistra SA: Cancer of the ovary. N Engl J Med. 2004, 351 (24): 2519-2529. 10.1056/NEJMra041842.
3. Bookman MA, Greer BE, Ozols RF: Optimal therapy of advanced ovarian cancer: carboplatin and paclitaxel vs. cisplatin and paclitaxel (GOG 158) and an update on GOG0 182-ICON5. Int J Gynecol Cancer. 2003, 13 (6): 735-740. 10.1111/j.1525-1438.2003.13602.x.
4. Parmar MK, Ledermann JA, Colombo N, du Bois A, Delaloye JF, Kristensen GB, Wheeler S, Swart AM, Qian W, Torri V, et al: Paclitaxel plus platinum-based chemotherapy versus conventional platinum-based chemotherapy in women with relapsed ovarian cancer: the ICON4/AGO-OVAR-2.2 trial. Lancet. 2003, 361 (9375): 2099-2106. 10.1016/S0140-6736(03)13718-X.
5. Sakamoto M, Kondo A, Kawasaki K, Goto T, Sakamoto H, Miyake K, Koyamatsu Y, Akiya T, Iwabuchi H, Muroya T, et al: Analysis of gene expression profiles associated with cisplatin resistance in human ovarian cancer cell lines and tissues using cDNA microarray. Hum Cell. 2001, 14 (4): 305-315.
Cited by
51 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献