2D-electrophoresis and multiplex immunoassay proteomic analysis of different body fluids and cellular components reveal known and novel markers for extended fasting

Author:

Bouwman Freek G,de Roos Baukje,Rubio-Aliaga Isabel,Crosley L Katie,Duthie Susan J,Mayer Claus,Horgan Graham,Polley Abigael C,Heim Carolin,Coort Susan LM,Evelo Chris T,Mulholland Francis,Johnson Ian T,Elliott Ruan M,Daniel Hannelore,Mariman Edwin CM

Abstract

Abstract Background Proteomic technologies applied for profiling human biofluids and blood cells are considered to reveal new biomarkers of exposure or provide insights into novel mechanisms of adaptation. Methods Both a non-targeted (classical 2D-electrophoresis combined with mass spectrometry) as well as a targeted proteomic approach (multiplex immunoassay) were applied to investigate how fasting for 36 h, as compared to 12 h, affects the proteome of platelets, peripheral blood mononuclear cells (PBMC), plasma, urine and saliva collected from ten healthy volunteers. Results Between-subject variability was highest in the plasma proteome and lowest in the PBMC proteome. Random Forests analysis performed on the entire dataset revealed that changes in the level of the RhoGDI2 protein in PBMC and plasma ApoA4 levels were the two most obvious biomarkers of an extended fasting. Random Forests (RF) analysis of the multiplex immunoassay data revealed leptin and MMP-3 as biomarkers for extended fasting. However, high between-subject variability may have masked the extended fasting effects in the proteome of the biofluids and blood cells. Conclusions Identification of significantly changed proteins in biofluids and blood cells using a non-targeted approach, together with the outcome of targeted analysis revealed both known and novel markers for a 36 h fasting period, including the cellular proteins RhoGDI2 and CLIC1, and plasma proteins ApoA4, leptin and MMP-3. The PBMC proteome exhibited the lowest between-subject variability and therefore these cells appear to represent the best biosamples for biomarker discovery in human nutrigenomics.

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3