A towards-multidimensional screening approach to predict candidate genes of rheumatoid arthritis based on SNP, structural and functional annotations

Author:

Zhang Liangcai,Li Wan,Song Leilei,Chen Lina

Abstract

Abstract Background According to the Genetic Analysis Workshops (GAW), hundreds of thousands of SNPs have been tested for association with rheumatoid arthritis. Traditional genome-wide association studies (GWAS) have been developed to identify susceptibility genes using a "most significant SNPs/genes" model. However, many minor- or modest-risk genes are likely to be missed after adjustment of multiple testing. This screening process uses a strict selection of statistical thresholds that aim to identify susceptibility genes based only on statistical model, without considering multi-dimensional biological similarities in sequence arrangement, crystal structure, or functional categories/biological pathways between candidate and known disease genes. Methods Multidimensional screening approaches combined with traditional statistical genetics methods can consider multiple biological backgrounds of genetic mutation, structural, and functional annotations. Here we introduce a newly developed multidimensional screening approach for rheumatoid arthritis candidate genes that considers all SNPs with nominal evidence of Bayesian association (BFLn > 0), and structural and functional similarities of corresponding genes or proteins. Results Our multidimensional screening approach extracted all risk genes (BFLn > 0) by odd ratios of hypothesis H1 to H0, and determined whether a particular group of genes shared underlying biological similarities with known disease genes. Using this method, we found 6614 risk SNPs in our Bayesian screen result set. Finally, we identified 146 likely causal genes for rheumatoid arthritis, including CD4, FGFR1, and KDR, which have been reported as high risk factors by recent studies. We must denote that 790 (96.1%) of genes identified by GWAS could not easily be classified into related functional categories or biological processes associated with the disease, while our candidate genes shared underlying biological similarities (e.g. were in the same pathway or GO term) and contributed to disease etiology, but where common variations in each of these genes make modest contributions to disease risk. We also found 6141 risk SNPs that were too minor to be detected by conventional approaches, and associations between 58 candidate genes and rheumatoid arthritis were verified by literature retrieved from the NCBI PubMed module. Conclusions Our proposed approach to the analysis of GAW16 data for rheumatoid arthritis was based on an underlying biological similarities-based method applied to candidate and known disease genes. Application of our method could identify likely causal candidate disease genes of rheumatoid arthritis, and could yield biological insights that not detected when focusing only on genes that give the strongest evidence by multiple testing. We hope that our proposed method complements the "most significant SNPs/genes" model, and provides additional insights into the pathogenesis of rheumatoid arthritis and other diseases, when searching datasets for hundreds of genetic variances.

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics

Reference54 articles.

1. Dhaouadi T, Sfar I, Abelmoula L, Jendoubi-Ayed S, Aouadi H, Ben Abdellah T, Ayed K, Zouari R, Gorgi Y: Role of immune system, apoptosis and angiogenesis in pathogenesis of rheumatoid arthritis and joint destruction, a systematic review. Tunis Med. 2007, 85 (12): 991-998.

2. Kanat F, Levendoglu F, Teke T: Radiological and functional assessment of pulmonary involvement in the rheumatoid arthritis patients. Rheumatol Int. 2007, 27 (5): 459-466. 10.1007/s00296-006-0234-0.

3. Yoo YJ, Gao G, Zhang K: Case-control association analysis of rheumatoid arthritis with candidate genes using related cases. BMC Proc. 2007, 1 (Suppl 1): S33-10.1186/1753-6561-1-s1-s33.

4. Ritchie MD, Bartlett J, Bush WS, Edwards TL, Motsinger AA, Torstenson ES: Exploring epistasis in candidate genes for rheumatoid arthritis. BMC Proc. 2007, 1 (Suppl 1): S70-10.1186/1753-6561-1-s1-s70.

5. Dieguez-Gonzalez R, Akar S, Calaza M, Gonzalez-Alvaro I, Fernandez-Gutierrez B, Lamas JR, de la Serna AR, Caliz R, Blanco FJ, Pascual-Salcedo D, et al: Lack of Association with Rheumatoid Arthritis of Selected Polymorphisms in 4 Candidate Genes: CFH, CD209, Eotaxin-3, and MHC2TA. J Rheumatol. 2009

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3