Author:
Zhang Liangcai,Li Wan,Song Leilei,Chen Lina
Abstract
Abstract
Background
According to the Genetic Analysis Workshops (GAW), hundreds of thousands of SNPs have been tested for association with rheumatoid arthritis. Traditional genome-wide association studies (GWAS) have been developed to identify susceptibility genes using a "most significant SNPs/genes" model. However, many minor- or modest-risk genes are likely to be missed after adjustment of multiple testing. This screening process uses a strict selection of statistical thresholds that aim to identify susceptibility genes based only on statistical model, without considering multi-dimensional biological similarities in sequence arrangement, crystal structure, or functional categories/biological pathways between candidate and known disease genes.
Methods
Multidimensional screening approaches combined with traditional statistical genetics methods can consider multiple biological backgrounds of genetic mutation, structural, and functional annotations. Here we introduce a newly developed multidimensional screening approach for rheumatoid arthritis candidate genes that considers all SNPs with nominal evidence of Bayesian association (BFLn > 0), and structural and functional similarities of corresponding genes or proteins.
Results
Our multidimensional screening approach extracted all risk genes (BFLn > 0) by odd ratios of hypothesis H1 to H0, and determined whether a particular group of genes shared underlying biological similarities with known disease genes. Using this method, we found 6614 risk SNPs in our Bayesian screen result set. Finally, we identified 146 likely causal genes for rheumatoid arthritis, including CD4, FGFR1, and KDR, which have been reported as high risk factors by recent studies. We must denote that 790 (96.1%) of genes identified by GWAS could not easily be classified into related functional categories or biological processes associated with the disease, while our candidate genes shared underlying biological similarities (e.g. were in the same pathway or GO term) and contributed to disease etiology, but where common variations in each of these genes make modest contributions to disease risk. We also found 6141 risk SNPs that were too minor to be detected by conventional approaches, and associations between 58 candidate genes and rheumatoid arthritis were verified by literature retrieved from the NCBI PubMed module.
Conclusions
Our proposed approach to the analysis of GAW16 data for rheumatoid arthritis was based on an underlying biological similarities-based method applied to candidate and known disease genes. Application of our method could identify likely causal candidate disease genes of rheumatoid arthritis, and could yield biological insights that not detected when focusing only on genes that give the strongest evidence by multiple testing. We hope that our proposed method complements the "most significant SNPs/genes" model, and provides additional insights into the pathogenesis of rheumatoid arthritis and other diseases, when searching datasets for hundreds of genetic variances.
Publisher
Springer Science and Business Media LLC
Subject
Genetics (clinical),Genetics
Reference54 articles.
1. Dhaouadi T, Sfar I, Abelmoula L, Jendoubi-Ayed S, Aouadi H, Ben Abdellah T, Ayed K, Zouari R, Gorgi Y: Role of immune system, apoptosis and angiogenesis in pathogenesis of rheumatoid arthritis and joint destruction, a systematic review. Tunis Med. 2007, 85 (12): 991-998.
2. Kanat F, Levendoglu F, Teke T: Radiological and functional assessment of pulmonary involvement in the rheumatoid arthritis patients. Rheumatol Int. 2007, 27 (5): 459-466. 10.1007/s00296-006-0234-0.
3. Yoo YJ, Gao G, Zhang K: Case-control association analysis of rheumatoid arthritis with candidate genes using related cases. BMC Proc. 2007, 1 (Suppl 1): S33-10.1186/1753-6561-1-s1-s33.
4. Ritchie MD, Bartlett J, Bush WS, Edwards TL, Motsinger AA, Torstenson ES: Exploring epistasis in candidate genes for rheumatoid arthritis. BMC Proc. 2007, 1 (Suppl 1): S70-10.1186/1753-6561-1-s1-s70.
5. Dieguez-Gonzalez R, Akar S, Calaza M, Gonzalez-Alvaro I, Fernandez-Gutierrez B, Lamas JR, de la Serna AR, Caliz R, Blanco FJ, Pascual-Salcedo D, et al: Lack of Association with Rheumatoid Arthritis of Selected Polymorphisms in 4 Candidate Genes: CFH, CD209, Eotaxin-3, and MHC2TA. J Rheumatol. 2009
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献