Author:
Kuijjer Marieke L,van den Akker Brendy EWM,Hilhorst Riet,Mommersteeg Monique,Buddingh Emilie P,Serra Massimo,Bürger Horst,Hogendoorn Pancras CW,Cleton-Jansen Anne-Marie
Abstract
Abstract
Background
High-grade osteosarcoma is a primary malignant bone tumor mostly occurring in adolescents and young adults, with a second peak at middle age. Overall survival is approximately 60%, and has not significantly increased since the introduction of neoadjuvant chemotherapy in the 1970s. The genomic profile of high-grade osteosarcoma is complex and heterogeneous. Integration of different types of genome-wide data may be advantageous in extracting relevant information from the large number of aberrations detected in this tumor.
Methods
We analyzed genome-wide gene expression data of osteosarcoma cell lines and integrated these data with a kinome screen. Data were analyzed in statistical language R, using LIMMA for detection of differential expression/phosphorylation. We subsequently used Ingenuity Pathways Analysis to determine deregulated pathways in both data types.
Results
Gene set enrichment indicated that pathways important in genomic stability are highly deregulated in these tumors, with many genes showing upregulation, which could be used as a prognostic marker, and with kinases phosphorylating peptides in these pathways. Akt and AMPK signaling were identified as active and inactive, respectively. As these pathways have an opposite role on mTORC1 signaling, we set out to inhibit Akt kinases with the allosteric Akt inhibitor MK-2206. This resulted in inhibition of proliferation of osteosarcoma cell lines U-2 OS and HOS, but not of 143B, which harbors a KRAS oncogenic transformation.
Conclusions
We identified both overexpression and hyperphosphorylation in pathways playing a role in genomic stability. Kinome profiling identified active Akt signaling, which could inhibit proliferation in 2/3 osteosarcoma cell lines. Inhibition of PI3K/Akt/mTORC1 signaling may be effective in osteosarcoma, but further studies are required to determine whether this pathway is active in a substantial subgroup of this heterogeneous tumor.
Publisher
Springer Science and Business Media LLC
Subject
Genetics(clinical),Genetics
Reference38 articles.
1. Raymond AK, Ayala AG, Knuutila S: Conventional osteosarcoma. World Health Classification of Tumours. Pathology and Genetics of Tumours of Soft Tissue and Bone. Edited by: Fletcher CDM, Unni KK, Mertens F. 2002, Lyon: IARC Press, 264-270.
2. Bacci G, Longhi A, Versari M, Mercuri M, Briccoli A, Picci P: Prognostic factors for osteosarcoma of the extremity treated with neoadjuvant chemotherapy - 15-year experience in 789 patients treated at a single institution. Cancer. 2006, 106: 1154-1161. 10.1002/cncr.21724.
3. Buddingh EP, Anninga JK, Versteegh MI, Taminiau AH, Egeler RM, van Rijswijk CS, Hogendoorn PCW, Lankester AC, Gelderblom H: Prognostic factors in pulmonary metastasized high-grade osteosarcoma. Pediatr Blood Cancer. 2010, 54: 216-221.
4. Allison DC, Carney SC, Ahlmann ER, Hendifar A, Chawla S, Fedenko A, Angeles C, Menendez LR: A meta-analysis of osteosarcoma outcomes in the modern medical era. Sarcoma. 2012, 2012: 704872.
5. Anninga JK, Gelderblom H, Fiocco M, Kroep JR, Taminiau AHM, Hogendoorn PCW, Egeler RM: Chemotherapeutic adjuvant treatment for osteosarcoma: where do we stand?. Eur J Cancer. 2011, 47: 2431-2445. 10.1016/j.ejca.2011.05.030.
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献