Author:
Wang Yuker,Carlton Victoria EH,Karlin-Neumann George,Sapolsky Ronald,Zhang Li,Moorhead Martin,Wang Zhigang C,Richardson Andrea L,Warren Robert,Walther Axel,Bondy Melissa,Sahin Aysegul,Krahe Ralf,Tuna Musaffe,Thompson Patricia A,Spellman Paul T,Gray Joe W,Mills Gordon B,Faham Malek
Abstract
Abstract
Background
A major challenge facing DNA copy number (CN) studies of tumors is that most banked samples with extensive clinical follow-up information are Formalin-Fixed Paraffin Embedded (FFPE). DNA from FFPE samples generally underperforms or suffers high failure rates compared to fresh frozen samples because of DNA degradation and cross-linking during FFPE fixation and processing. As FFPE protocols may vary widely between labs and samples may be stored for decades at room temperature, an ideal FFPE CN technology should work on diverse sample sets. Molecular Inversion Probe (MIP) technology has been applied successfully to obtain high quality CN and genotype data from cell line and frozen tumor DNA. Since the MIP probes require only a small (~40 bp) target binding site, we reasoned they may be well suited to assess degraded FFPE DNA. We assessed CN with a MIP panel of 50,000 markers in 93 FFPE tumor samples from 7 diverse collections. For 38 FFPE samples from three collections we were also able to asses CN in matched fresh frozen tumor tissue.
Results
Using an input of 37 ng genomic DNA, we generated high quality CN data with MIP technology in 88% of FFPE samples from seven diverse collections. When matched fresh frozen tissue was available, the performance of FFPE DNA was comparable to that of DNA obtained from matched frozen tumor (genotype concordance averaged 99.9%), with only a modest loss in performance in FFPE.
Conclusion
MIP technology can be used to generate high quality CN and genotype data in FFPE as well as fresh frozen samples.
Publisher
Springer Science and Business Media LLC
Subject
Genetics (clinical),Genetics
Cited by
82 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献