Identification of genetic risk variants for deep vein thrombosis by multiplexed next-generation sequencing of 186 hemostatic/pro-inflammatory genes

Author:

Lotta Luca A,Wang Mark,Yu Jin,Martinelli Ida,Yu Fuli,Passamonti Serena M,Consonni Dario,Pappalardo Emanuela,Menegatti Marzia,Scherer Steven E,Lewis Lora L,Akbar Humeira,Wu Yuanqing,Bainbridge Matthew N,Muzny Donna M,Mannucci Pier M,Gibbs Richard A,Peyvandi Flora

Abstract

Abstract Background Next-generation DNA sequencing is opening new avenues for genetic association studies in common diseases that, like deep vein thrombosis (DVT), have a strong genetic predisposition still largely unexplained by currently identified risk variants. In order to develop sequencing and analytical pipelines for the application of next-generation sequencing to complex diseases, we conducted a pilot study sequencing the coding area of 186 hemostatic/proinflammatory genes in 10 Italian cases of idiopathic DVT and 12 healthy controls. Results A molecular-barcoding strategy was used to multiplex DNA target capture and sequencing, while retaining individual sequence information. Genomic libraries with barcode sequence-tags were pooled (in pools of 8 or 16 samples) and enriched for target DNA sequences. Sequencing was performed on ABI SOLiD-4 platforms. We produced > 12 gigabases of raw sequence data to sequence at high coverage (average: 42X) the 700-kilobase target area in 22 individuals. A total of 1876 high-quality genetic variants were identified (1778 single nucleotide substitutions and 98 insertions/deletions). Annotation on databases of genetic variation and human disease mutations revealed several novel, potentially deleterious mutations. We tested 576 common variants in a case-control association analysis, carrying the top-5 associations over to replication in up to 719 DVT cases and 719 controls. We also conducted an analysis of the burden of nonsynonymous variants in coagulation factor and anticoagulant genes. We found an excess of rare missense mutations in anticoagulant genes in DVT cases compared to controls and an association for a missense polymorphism of FGA (rs6050; p = 1.9 × 10-5, OR 1.45; 95% CI, 1.22-1.72; after replication in > 1400 individuals). Conclusions We implemented a barcode-based strategy to efficiently multiplex sequencing of hundreds of candidate genes in several individuals. In the relatively small dataset of our pilot study we were able to identify bona fide associations with DVT. Our study illustrates the potential of next-generation sequencing for the discovery of genetic variation predisposing to complex diseases.

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3