Abstract
Abstract
Background
Increasing temperatures and changes in precipitation patterns threaten the existence of many organisms. It is therefore informative to identify the functional traits that underlie differences in desiccation resistance to understand the response of different species to changes in water availability resulting from climate change. We used adult dung beetles as model species due to their importance to ecosystem services. We investigated: (i) the effect of physiological (water loss rate, water loss tolerance, body water content), morphological (body mass) and ecological (nesting behaviour) traits on desiccation resistance; (ii) the role of phylogenetic relatedness in the above associations; and, (iii) whether relatively large or small individuals within a species have similar desiccation resistance and whether these responses are consistent across species.
Results
Desiccation resistance decreased with increasing water loss rate and increased with increasing water loss tolerance (i.e. proportion of initial water content lost at the time of death). A lack of consistent correlation between these traits due to phylogenetic relatedness suggests that the relationship is not determined by a shared evolutionary history. The advantage of a large body size in favouring desiccation resistance depended on the nesting behaviour of the dung beetles. In rollers (one species), large body sizes increased desiccation resistance, while in tunnelers and dwellers, desiccation resistance seemed not to be dependent on body mass. The phylogenetic correlation between desiccation resistance and nesting strategies was significant. Within each species, large individuals showed greater resistance to desiccation, and these responses were consistent across species.
Conclusions
Resistance to desiccation was explained mainly by the dung beetles’ ability to reduce water loss rate (avoidance) and to tolerate water loss (tolerance). A reduction in water availability may impose a selection pressure on body size that varies based on nesting strategies, even though these responses may be phylogenetically constrained. Changes in water availability are more likely to affect dweller species, and hence the ecosystem services they provide.
Publisher
Springer Science and Business Media LLC
Subject
Animal Science and Zoology
Reference74 articles.
1. van Klink R, Bowler DE, Gongalsky KB, Swengel AB, Gentile A, Chase JM. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science. 2020;368(6489):417–20.
2. Montgomery GA, Dunn RR, Fox R, Jongejans E, Leather SR, Saunders ME, Shorthall CR, Tingley MW, Wagner DL. Is the insect apocalypse upon us? How to find out. Biol Conserv. 2020;241:108327.
3. Cardoso P, Barton PS, Birkhofer K, Chichorro F, Deacon C, Fartmann T, Fukushima CS, et al. Scientists’ warning to humanity on insect extinctions. Biol Conserv. 2020;242:108426.
4. Kellermann V, van Heerwaarden B. Terrestrial insects and climate change: adaptive responses in key traits. Physiol Entomol. 2019;44:99–115.
5. Bindoff NL, Stott PA, Achuta Rao KM, Allen MR, Gillett N, Gutzler D, Hansingo K et al. Detection and attribution of climate change: from global to regional. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Doschung J, Nauels A, et al., editors. Climate change 2013: the physical science basis. Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge and New York: Cambridge University Press; 2013. p. 867–952.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献