Author:
Pan Huihui,Zhang Vanessa Li,Di Kai,Kuok Meng Hau,Lim Hock Siah,Ng Ser Choon,Singh Navab,Adeyeye Adekunle Olusola
Abstract
Abstract
Phononic and magnonic dispersions of a linear array of periodic alternating Ni80Fe20 and bottom anti-reflective coating nanostripes on a Si substrate have been measured using Brillouin light scattering. The observed phononic gaps are considerably larger than those of laterally patterned multi-component crystals previously reported, mainly a consequence of the high elastic and density contrasts between the stripe materials. Additionally, the phonon hybridization bandgap has an unusual origin in the hybridization and avoided crossing of the zone-folded Rayleigh and pseudo-Sezawa waves. The magnonic band structure features near-dispersionless branches, with unusual vortex-like dynamic magnetization profiles, some of which lie below the highly-dispersive fundamental mode branch. Finite element calculations of the phononic and magnonic dispersions of the magphonic crystal accord well with experimental data.
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献