Author:
Song Er Hong,Ali Ghafar,Yoo Sung Ho,Jiang Qing,Cho Sung Oh
Abstract
Abstract
Using density functional theory calculations, we have investigated the effects of biaxial tensile strain on the electronic and magnetic properties of partially hydrogenated graphene (PHG) structures. Our study demonstrates that PHG configuration with hexagon vacancies is more energetically favorable than several other types of PHG configurations. In addition, an appropriate biaxial tensile strain can effectively tune the band gap and magnetism of the hydrogenated graphene. The band gap and magnetism of such configurations can be continuously increased when the magnitude of the biaxial tensile strain is increased. This fact that both the band gap and magnetism of partially hydrogenated graphene can be tuned by applying biaxial tensile strain provides a new pathway for the applications of graphene to electronics and photonics.
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献