Realization of radial p-n junction silicon nanowire solar cell based on low-temperature and shallow phosphorus doping
-
Published:2013-12
Issue:1
Volume:8
Page:
-
ISSN:1556-276X
-
Container-title:Nanoscale Research Letters
-
language:en
-
Short-container-title:Nanoscale Res Lett
Author:
Dong Gangqiang,Liu Fengzhen,Liu Jing,Zhang Hailong,Zhu Meifang
Abstract
Abstract
A radial p-n junction solar cell based on vertically free-standing silicon nanowire (SiNW) array is realized using a novel low-temperature and shallow phosphorus doping technique. The SiNW arrays with excellent light trapping property were fabricated by metal-assisted chemical etching technique. The shallow phosphorus doping process was carried out in a hot wire chemical vapor disposition chamber with a low substrate temperature of 250°C and H2-diluted PH3 as the doping gas. Auger electron spectroscopy and Hall effect measurements prove the formation of a shallow p-n junction with P atom surface concentration of above 1020 cm−3 and a junction depth of less than 10 nm. A short circuit current density of 37.13 mA/cm2 is achieved for the radial p-n junction SiNW solar cell, which is enhanced by 7.75% compared with the axial p-n junction SiNW solar cell. The quantum efficiency spectra show that radial transport based on the shallow phosphorus doping of SiNW array improves the carrier collection property and then enhances the blue wavelength region response. The novel shallow doping technique provides great potential in the fabrication of high-efficiency SiNW solar cells.
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science
Reference32 articles.
1. Huang Y-F, Chattopadhyay S, Jen Y-J, Peng C-Y, Liu T-A, Hsu Y-K, Pan C-L, Lo H-C, Hsu C-H, Chang Y-H, Lee C-S, Chen K-H, Chen L-C: Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures. Nat Nanotechnol 2007, 66: 70–774. 2. Xu HB, Lu N, Qi DP, Hao JY, Gao LG, Zhang B, Chi LF: Biomimetic antireflective Si nanopillar arrays. Small 2008, 4: 1972–1975. 10.1002/smll.200800282 3. Sivakov V, Andrä G, Gawlik A, Berger A, Plentz J, Falk F, Christiansen SH: Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters. Nano Lett 2009, 9: 1549–1554. 10.1021/nl803641f 4. Stelzner T, Pietsch M, Andrä G, Falk F, Ose E, Christiansen S: Silicon nanowire-based solar cells. Nanotechnology 2008, 19: 295203. 10.1088/0957-4484/19/29/295203 5. Zhu J, Yu Z, Burkhard GF, Hsu CM, Connor ST, Xu Y, Wang Q, McGehee M, Fan S, Cui Y: Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. Nano Lett 2009, 9: 279–282. 10.1021/nl802886y
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|