Author:
Wei Qi,Zhan Li,Juanjuan Bi,Jing Wang,Jianjun Wang,Taoli Sun,Yi’an Guo,Wangsuo Wu
Abstract
Abstract
In this work, technetium-99 (99mTc) was used as the radiolabeling isotope to study the biodistribution of oxidized multi-walled carbon nanotubes (oMWCNTs) and/or nanodiamonds (NDs) in mice after intravenous administration. The histological impact of non-radiolabeled oMWCNTs or NDs was investigated in comparison to the co-exposure groups. 99mTc-labeled nanomaterials had high stability in vivo and fast clearance from blood. After a single injection of oMWCNTs, the highest distribution was found in the lungs, with lower uptake in the liver/spleen. As for NDs injected alone, high distribution in the liver, spleen, and lungs was observed right after. However, uptake in the lungs was decreased obviously after 24 h, while high accumulation in the liver or spleen continued. After co-injection of oMWCNTs and NDs, oMWCNTs significantly affected the distribution pattern of NDs in vivo. Meanwhile, the increasing dose of oMWCNTs decreased the hepatic and splenic accumulation of NDs and gradually increased lung retention. On the contrary, the NDs had no significant effects on the distribution of oMWCNTs in mice. Histological photographs showed that oMWCNTs were mainly captured by lung macrophages, and NDs were located in the bronchi and alveoli after co-administration. oMWCNTs and NDs had different modes of micro-cells. In conclusion, the behavior and fate of NDs in mice depended strongly on oMWCNTs, but NDs had a small influence on the biodistribution and excretion pattern of oMWCNTs.
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献