Magnetic properties of fluffy Fe@α-Fe 2 O 3 core-shell nanowires

Author:

Cao Xiaobing,Wang Weihua,Zhang Xinghua,Li Luyan,Cheng Yahui,Liu Hui,Du Sichao,Zheng Rongkun

Abstract

Abstract Abstract Novel fluffy Fe@α-Fe2O3 core-shell nanowires have been synthesized using the chemical reaction of ferrous sulfate and sodium borohydride, as well as the post-annealing process in air. The coercivity of the as-synthesized nanowires is above 684 Oe in the temperature range of 5 to 300 K, which is significantly higher than that of the bulk Fe (approximately 0.9 Oe). Through the annealing process in air, the coercivity and the exchange field are evidently improved. Both the coercivity and the exchange field increase with increasing annealing time (T A ) and reach their maximum values of 1,042 and 78 Oe, respectively, at T A  = 4 h. The magnetic measurements show that the effective anisotropy is increased with increasing the thickness of theα-Fe2O3 by annealing. The large values of coercivity and exchange field, as well as the high surface area to volume ratio, may make the fluffy Fe@α-Fe2O3 core-shell nanowire a promising candidate for the applications of the magnetic drug delivery, electrochemical energy storage, gas sensors, photocatalysis, and so forth.

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3