Author:
Zhang Peng,Li Shibin,Liu Chunhua,Wei Xiongbang,Wu Zhiming,Jiang Yadong,Chen Zhi
Abstract
Abstract
Due to the localized surface plasmon (LSP) effect induced by Ag nanoparticles inside black silicon, the optical absorption of black silicon is enhanced dramatically in near-infrared range (1,100 to 2,500 nm). The black silicon with Ag nanoparticles shows much higher absorption than black silicon fabricated by chemical etching or reactive ion etching over ultraviolet to near-infrared (UV-VIS-NIR, 250 to 2,500 nm). The maximum absorption even increased up to 93.6% in the NIR range (820 to 2,500 nm). The high absorption in NIR range makes LSP-enhanced black silicon a potential material used for NIR-sensitive optoelectronic device.
PACS
78.67.Bf; 78.30.Fs; 78.40.-q; 42.70.Gi
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science
Reference37 articles.
1. Diedenhofen SL, Vecchi G, Bauhuis G, Rivas JG: Broadband and omnidirectional anti-reflection coating for III/V multi-junction solar cells. Sol Energ Mat Sol C 2014, 190: 571–595.
2. Makableh YF, Vasan R, Sarker JC, Nusir AI, Seal S, Manasreh MO: Enhancement of GaAs solar cell performance by using a ZnO sol–gel anti-reflection coating. Sol Energy Mater Sol Cells 2014, 123: 178–182.
3. Campbell P, Green MA: Light trapping properties of pyramidally textured surfaces. J Appl Phys 1987, 62: 243–249. 10.1063/1.339189
4. Yu Z, Raman A, Fan S: Fundamental limit of nanophotonic light trapping in solar cells. P Natl Acad Sci USA 2010, 107: 17491–17496. 10.1073/pnas.1008296107
5. Sai H, Kanamori Y, Arafune K, Ohshita Y, Yamaguchi M: Light trapping effect of submicron surface textures in crystalline Si solar cells. Prog Photovolt Res Appl 2007, 15: 415–423. 10.1002/pip.754
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献