Author:
Gulati Karan,Aw Moom Sinn,Losic Dusan
Abstract
Abstract
Current bone fixation technology which uses stainless steel wires known as Kirschner wires for fracture fixing often causes infection and reduced skeletal load resulting in implant failure. Creating new wires with drug-eluting properties to locally deliver drugs is an appealing approach to address some of these problems. This study presents the use of titanium [Ti] wires with titania nanotube [TNT] arrays formed with a drug delivery capability to design alternative bone fixation tools for orthopaedic applications. A titania layer with an array of nanotube structures was synthesised on the surface of a Ti wire by electrochemical anodisation and loaded with antibiotic (gentamicin) used as a model of bone anti-bacterial drug. Successful fabrication of TNT structures with pore diameters of approximately 170 nm and length of 70 μm is demonstrated for the first time in the form of wires. The drug release characteristics of TNT-Ti wires were evaluated, showing a two-phase release, with a burst release (37%) and a slow release with zero-order kinetics over 11 days. These results confirmed our system's ability to be applied as a drug-eluting tool for orthopaedic applications. The established biocompatibility of TNT structures, closer modulus of elasticity to natural bones and possible inclusion of desired drugs, proteins or growth factors make this system a promising alternative to replace conventional bone implants to prevent bone infection and to be used for targeted treatment of bone cancer, osteomyelitis and other orthopaedic diseases.
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science
Reference30 articles.
1. Mahan J, Seligson D, Henry SL, Hynes P, Dobbins J: Factors in pin tract infections. Orthopedics 1991, 14: 305–308.
2. Mahan J, Seligson D, Henry SL, Hynes P, Dobbins J: In vitro and in vivo comparative colonization of Staphylococcus aureus and Staphylococcus epidermidis on orthopaedic implant materials. Biomaterials 1989, 10: 325–328. 10.1016/0142-9612(89)90073-2
3. von Eiff C, Proctor RA, Peters G: Coagulase-negative staphylococci. Pathogens have major role in nosocomial infections. Postgrad Med 2001, 110: 63–70.
4. Hoyle BD, Costerton JW: Bacterial resistance to antibiotics: the role of biofilms. Prog Drug Res 1991, 37: 91–105.
5. Birdsall PD, Milne DD: Toxic shock syndrome due to percutaneous Kirschner wires. Injury 1999, 30: 509–510. 10.1016/S0020-1383(99)00142-4
Cited by
91 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献