Author:
Chen Chong,Xie Yi,Ali Ghafar,Yoo Seung Hwa,Cho Sung Oh
Abstract
Abstract
We improve the conversion efficiency of Ag2S quantum dot (QD)-sensitized TiO2 nanotube-array electrodes by chemically depositing ZnO recombination barrier layer on plain TiO2 nanotube-array electrodes. The optical properties, structural properties, compositional analysis, and photoelectrochemistry properties of prepared electrodes have been investigated. It is found that for the prepared electrodes, with increasing the cycles of Ag2S deposition, the photocurrent density and the conversion efficiency increase. In addition, as compared to the Ag2S QD-sensitized TiO2 nanotube-array electrode without the ZnO layers, the conversion efficiency of the electrode with the ZnO layers increases significantly due to the formation of efficient recombination layer between the TiO2 nanotube array and electrolyte.
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science
Reference40 articles.
1. Grätzel M: Dye-sensitized solid-state heterojunction solar cells. MRS Bull 2005, 30: 23–27. 10.1557/mrs2005.4
2. Wei D: Dye sensitized solar cells. Int J Mol Sci 2010, 11: 1103–1113. 10.3390/ijms11031103
3. Fan SH, Wang KZ: Recent advances on molecular design of ruthenium (II) sensitizers in dye-sensitized solar cells. Chinese J Inorg Chem 2008, 24: 1206–1212.
4. Grätzel M: Dye-sensitized solar cells. J Photoch Photobio C 2003, 4: 145–153. 10.1016/S1389-5567(03)00026-1
5. Gao F, Wang Y, Shi D, Zhang J, Wang MK, Jing XY, Humphry-Baker R, Wang P, Zakeeruddin SM, Grätzel M: Enhance the optical absorptivity of nanocrystalline TiO
2
film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells. J Am Chem Soc 2008, 130: 10720–10728. 10.1021/ja801942j
Cited by
100 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献