Author:
Noh Jin-Seo,Lee Min-Kyung,Ham Jinhee,Lee Wooyoung
Abstract
Abstract
Crystalline Co nanoparticles were hybridized with single-crystalline Bi nanowires simply by annealing Co-coated Bi nanowires at elevated temperatures. An initially near-amorphous Co film of 2-7 nm in thickness began to disrupt its morphology and to be locally transformed into crystallites in the early stage of annealing. The Co film became discontinuous after prolonged annealing, finally leading to isolated, crystalline Co nanoparticles of 8-27 nm in size. This process spontaneously proceeds to reduce the high surface tension and total energy of Co film. The annealing time required for Co nanoparticle formation decreased as annealing temperature increased, reflecting that this transformation occurs by the diffusional flow of Co atoms. The Co nanoparticle formation process was explained by a hole agglomeration and growth mechanism, which is similar to the model suggested by Brandon and Bradshaw, followed by the nanoparticle refinement.
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献