Numerical investigation of Al2O3/water nanofluid laminar convective heat transfer through triangular ducts

Author:

Zeinali Heris Saeed,Noie Seyyed Hossein,Talaii Elham,Sargolzaei Javad

Abstract

Abstract In this article, laminar flow-forced convective heat transfer of Al2O3/water nanofluid in a triangular duct under constant wall temperature condition is investigated numerically. In this investigation, the effects of parameters, such as nanoparticles diameter, concentration, and Reynolds number on the enhancement of nanofluids heat transfer is studied. Besides, the comparison between nanofluid and pure fluid heat transfer is achieved in this article. Sometimes, because of pressure drop limitations, the need for non-circular ducts arises in many heat transfer applications. The low heat transfer rate of non-circular ducts is one the limitations of these systems, and utilization of nanofluid instead of pure fluid because of its potential to increase heat transfer of system can compensate this problem. In this article, for considering the presence of nanoparticl: es, the dispersion model is used. Numerical results represent an enhancement of heat transfer of fluid associated with changing to the suspension of nanometer-sized particles in the triangular duct. The results of the present model indicate that the nanofluid Nusselt number increases with increasing concentration of nanoparticles and decreasing diameter. Also, the enhancement of the fluid heat transfer becomes better at high Re in laminar flow with the addition of nanoparticles.

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science

Reference47 articles.

1. Tauscher R, Mayinger F: Heat transfer enhancement in a plate heat exchanger with rib-roughened surfaces. Lehrstuhl afur Thermodynamik Technische Universitat Muchen, 85747 Garching, Germany; 1998.

2. Sahin AZ: Irreversibility's in various duct geometries with constant wall heat flux and laminar flow. Energy 1998, 23(6):465–473. 10.1016/S0360-5442(98)00010-3

3. Kakac S, Bergles AE, Mayinger F: Heat Exchangers. Thermal-Hydraulic Fundamentals and Design. New York: McGraw-Hill; 1981.

4. Namburu PK, Das DK, Tanguturi KM, Vajjha RS: Numerical study of turbulent flow and heat transfer characteristics of nanofluids considering variable properties. Int J Thermal Sci 2009, 48: 290–302. 10.1016/j.ijthermalsci.2008.01.001

5. Choi SUS: Enhancing thermal conductivity of fluid with nanoparticles. In Developments and Application of Non-Newtonian Flows. Volume 66. Edited by: Siginer DA Wang HP. New York: ASME; 1995:99–105.

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3