Author:
Xiong Zuzhou,Zheng Maojun,Zhu Changqing,Zhang Bin,Ma Li,Shen Wenzhong
Abstract
Abstract
Visible light accounts for about 43% of the solar spectrum, and developing highly efficient visible-light-driven photocatalyst is of special significance. In this work, highly efficient three-dimensional (3D) Cd1−x
Zn
x
S photocatalysts for hydrogen generation under the irradiation of visible light were synthesized via one-step solvothermal pathway. Scanning electron microscope, X-ray diffractometer, Raman spectrometer, and X-ray photoelectron spectrometer were utilized to characterize the morphology, crystal structure, vibrational states, and surface composition of the obtained 3D Cd1−x
Zn
x
S. UV-Vis spectra indicated that the as-synthesized Cd1−x
Zn
x
S had appropriate bandgap and position of the conduction band that is beneficial for visible light absorption and photo-generated electron-hole pair separation. Moreover, the 3D structure offers a larger surface area thus supplying more surface reaction sites and better charge transport environment, and therefore, the efficiency of water splitting was improved further.
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献