Author:
Shen Yan,Deng Shaozhi,Zhang Yu,Liu Fei,Chen Jun,Xu Ningsheng
Abstract
Abstract
We report that vertically aligned molybdenum (Mo) nanowalls can grow on various substrates by simple thermal vapor deposition. Individual nanowalls have a typical thickness of about 50 nm and very good conductivity with a typical average value of about 1.97 × 104 Ω−1 cm−1, i.e., only an order of magnitude less than the value of bulk Mo. The formation process is characterized in detail, and it is found that Mo nanowalls grow from nanorods through nanotrees. The atomic arrangement, lattice mismatch relationship, and competition growth are all believed to contribute to the growth mechanism. The field emission performance is attractive, typically with a very low fluctuation of about approximately 1.18% at a high current density level of 10 mA/cm2, and a sustainably stable very large current density of approximately 57.5 mA/cm2 was recorded. These indicate that the Mo nanowall is a potential candidate as a cold cathode for application in vacuum electron devices, which demand both a high current and high current density.
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献