Author:
Gautier Loïck-Alexandre,Le Borgne Vincent,Al Moussalami Samir,El Khakani My Ali
Abstract
Abstract
Hierarchically structured MWCNT (h-MWCNT)-based cold cathodes were successfully achieved by means of a relatively simple and highly effective approach consisting of the appropriate combination of KOH-based pyramidal texturing of Si (100) substrates and PECVD growth of vertically aligned MWCNTs. By controlling the aspect ratio (AR) of the Si pyramids, we were able to tune the field electron emission (FEE) properties of the h-MWCNT cathodes. Indeed, when the AR is increased from 0 (flat Si) to 0.6, not only the emitted current density was found to increase exponentially, but more importantly its associated threshold field (TF) was reduced from 3.52 V/μm to reach a value as low as 1.95 V/μm. The analysis of the J-E emission curves in the light of the conventional Fowler-Nordheim model revealed the existence of two distinct low-field (LF) and high-field (HF) FEE regimes. In both regimes, the hierarchical structuring was found to increase significantly the associated β
LF and β
HF field enhancement factors of the h-MWCNT cathodes (by a factor of 1.7 and 2.2, respectively). Pyramidal texturing of the cathodes is believed to favor vacuum space charge effects, which could be invoked to account for the significant enhancement of the FEE, particularly in the HF regime where a β
HF as high as 6,980 was obtained for the highest AR value of 0.6.
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献