Author:
De la Cruz-Guzman Mayela,Aguilar-Aguilar Angelica,Hernandez-Adame Luis,Bañuelos-Frias Alan,Medellín-Rodríguez Francisco J,Palestino Gabriela
Abstract
Abstract
A rhodamine organosilane derivative (Rh-UTES) has been obtained by one-pot synthesis. The chemical structure of Rh-UTES was confirmed by nuclear magnetic resonance (NMR) and infrared (FTIR) techniques. To obtain an inorganic-organic hybrid sensor, Rh-UTES was covalently immobilized on a porous silicon microcavity (PSiMc) via triethoxysilane groups. The attachment of the organic derivative into PSiMc was confirmed by FTIR, specular reflectance, and scanning electron microscopy (SEM). The optical performance of Rh-UTES receptor for Hg2+ detection was investigated by fluorescent spectroscopy and microscopy. Upon the addition of increasing amounts of Hg2+ ions, a remarkable enhancement in emission intensity was produced in both systems. In the solid phase, an increase of integrated fluorescent emission of 0.12- and 0.15-fold after Hg2+ receptor coordination was observed. The light harvesting capability of PSiMc devices allowed obtaining an enhanced fluorescent emission after Rh-UTES immobilization (277-fold). The fluorescence microscopy of hybrid PSiMc sensor provided an optical qualitative test for Hg2+ detection.
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献