Author:
Yang Jun Hyuk,Kim Kyung Hwan,Bark Chung Wung,Choi Hyung Wook
Abstract
Abstract
TiO2 nanotube arrays are very attractive for dye-sensitized solar cells (DSSCs) owing to their superior charge percolation and slower charge recombination. Highly ordered, vertically aligned TiO2 nanotube arrays have been fabricated by a three-step anodization process. Although the use of a one-dimensional structure provides an enhanced photoelectrical performance, the smaller surface area reduces the adsorption of dye on the TiO2 surface. To overcome this problem, we investigated the effect of DSSCs constructed with a multilayer photoelectrode made of TiO2 nanoparticles and TiO2 nanotube arrays. We fabricated the novel multilayer photoelectrode via a layer-by-layer assembly process and thoroughly investigated the effect of various structures on the sample efficiency. The DSSC with a four-layer photoelectrode exhibited a maximum conversion efficiency of 7.22% because of effective electron transport and enhanced adsorption of dye on the TiO2 surface.
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science
Reference20 articles.
1. O’Regan B, Grätzel M: Nature. 1991, 353: 737–740. 10.1038/353737a0
2. Lee B, Kim J: Curr Appl Phys. 2009, 9: 404–408. 10.1016/j.cap.2008.03.017
3. O’Regan B, Grätzel M: Chem Phys Lett. 1991, 183: 89–93. 10.1016/0009-2614(91)85104-5
4. Durr M, Schmid A, Obermaier M, Rosselli S, Yasuda A, Nelles G: Nature. 2005, 4: 607–611. 10.1038/nmat1433
5. Matsui H, Okada K, Kawashima T, Ezure T, Tanabe N, Kwano R, Watanabe M: A: Chemistry. 2004, 164: 129–135.
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献