Statistical characteristics of reset switching in Cu/HfO2/Pt resistive switching memory

Author:

Zhang Meiyun,Long Shibing,Wang Guoming,Liu Ruoyu,Xu Xiaoxin,Li Yang,Xu Dinlin,Liu Qi,Lv Hangbing,Miranda Enrique,Suñé Jordi,Liu Ming

Abstract

Abstract A major challenge of resistive switching memory (resistive random access memory (RRAM)) for future application is how to reduce the fluctuation of the resistive switching parameters. In this letter, with a statistical methodology, we have systematically analyzed the reset statistics of the conductive bridge random access memory (CBRAM) with a Cu/HfO2/Pt structure which displays bipolar switching property. The experimental observations show that the distributions of the reset voltage (V reset) and reset current (I reset) are greatly influenced by the initial on-state resistance (R on) which is closely related to the size of the conductive filament (CF) before the reset process. The reset voltage increases and the current decreases with the on-state resistance, respectively, according to the scatter plots of the experimental data. Using resistance screening method, the statistical data of the reset voltage and current are decomposed into several ranges and the distributions of them in each range are analyzed by the Weibull model. Both the Weibull slopes of the reset voltage and current are demonstrated to be independent of the on-state resistance which indicates that no CF dissolution occurs before the reset point. The scale factor of the reset voltage increases with on-state resistance while that of the reset current decreases with it. These behaviors are fully in consistency with the thermal dissolution model, which gives an insight on the physical mechanism of the reset switching. Our work has provided an inspiration on effectively reducing the variation of the switching parameters of RRAM devices.

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3