Author:
Zhang Chunqian,Li Chuanbo,Liu Zhi,Zheng Jun,Xue Chunlai,Zuo Yuhua,Cheng Buwen,Wang Qiming
Abstract
Abstract
The enhanced room-temperature photoluminescence of porous Si nanowire arrays and its mechanism are investigated. Over 4 orders of magnitude enhancement of light intensity is observed by tuning their nanostructures and surface modification. It is concluded that the localized states related to Si-O bonds and self-trapped excitations in the nanoporous structures are attributed to the strong light emission.
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science
Reference21 articles.
1. Maeda Y: Visible photoluminescence from nanocrystallite Ge embedded in a glassy SiO2matrix: evidence in support of the quantum-confinement mechanism. Phys Rev B 1995, 51: 1658. 10.1103/PhysRevB.51.1658
2. Saar A: Photoluminescence from silicon nanostructures: the mutual role of quantum confinement and surface chemistry. J Nanophoton 2009, 3: 032501. 10.1117/1.3111826
3. Lin L, Guo S, Sun X, Feng J, Wang Y: Synthesis and photoluminescence properties of porous silicon nanowire arrays. Nanoscale Res Lett 1822, 2010: 5.
4. Kanemitsu Y, Uto H, Masumoto Y, Maeda Y: On the origin of visible photoluminescence in nanometer‒size Ge crystallites. Appl Phys Lett 1992, 61: 2187. 10.1063/1.108290
5. Won R, Paniccia M: Integrating silicon photonics. Nat Photon 2010, 4: 498.
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献