Author:
Ye Yu,Dai Lun,Gan Lin,Meng Hu,Dai Yu,Guo Xuefeng,Qin Guogang
Abstract
Abstract
Semiconductor nanowires (NWs) or nanobelts (NBs) have attracted more and more attention due to their potential application in novel optoelectronic devices. In this review, we present our recent work on novel NB photodetectors, where a three-terminal metal–semiconductor field-effect transistor (MESFET) device structure was exploited. In contrast to the common two-terminal NB (NW) photodetectors, the MESFET-based photodetector can make a balance among overall performance parameters, which is desired for practical device applications. We also present our recent work on graphene nanoribbon/semiconductor NW (SNW) heterojunction light-emitting diodes (LEDs). Herein, by taking advantage of both graphene and SNWs, we have fabricated, for the first time, the graphene-based nano-LEDs. This achievement opens a new avenue for developing graphene-based nano-electroluminescence devices. Moreover, the novel graphene/SNW hybrid devices can also find use in other applications, such as high-sensitivity sensor and transparent flexible devices in the future.
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献