Author:
Lim Jinsub,Kang Sung-Won,Moon Jieh,Kim Sungjin,Park Hyosun,Baboo Joseph Paul,Kim Jaekook
Abstract
Abstract
LiFePO4 nanocrystals were synthesized at a very low temperature of 170°C using carbon nanoparticles by a solvothermal process in a polyol medium, namely diethylene glycol without any heat treatment as a post procedure. The powder X-ray diffraction pattern of the LiFePO4 was indexed well to a pure orthorhombic system of olivine structure (space group: Pnma) with no undesirable impurities. The LiFePO4 nanocrystals synthesized at low temperature exhibited mono-dispersed and carbon-mixed plate-type LiFePO4 nanoparticles with average length, width, and thickness of approximately 100 to 300 nm, 100 to 200 nm, and 50 nm, respectively. It also appeared to reveal considerably enhanced electrochemical properties when compared to those of pristine LiFePO4. These observed results clearly indicate the effect of carbon in improving the reactivity and synthesis of LiFePO4 nanoparticles at a significantly lower temperature.
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science
Reference25 articles.
1. Padhi AK, Nanjundaswamy KS, Goodenough JB: Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 1997, 144: 1188. 10.1149/1.1837571
2. Ravert N, Chouinard Y, Magnan JF, Besner S, Gauthier M, Armand M: Electroactivity of natural and synthetic triphylite. Power Sources 2001, 97–98: 503.
3. Huang H, Yin S-C, Nazar LF: Approaching theoretical capacity of LiFePO4at room temperature at high rates. Electrochem Solid-State Lett 2001, 4: A170. 10.1149/1.1396695
4. Chung SY, Bloking JT, Chiang YM: Electronically conductive phosphor-olivines as lithium storage electrodes. Nat Mater 2002, 1: 123. 10.1038/nmat732
5. Yamada A, Nishimura S, Koizumi H, Kanno R, Seki S, Kobayashi Y, Miyashiro H, Dodd J, Yazami R, Fultz B: Intermediate phases in LixFePO4. Mater Res Soc Symp Proc 2007, 972-AA13–02: 257.
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献