Author:
Liu Huiyang,Wang Qin,Shen Guangxia,Zhang Chunlei,Li Chao,Ji Weihang,Wang Chun,Cui Daxiang
Abstract
Abstract
Carbon dots exhibit great potential in applications such as molecular imaging and in vivo molecular tracking. However, how to enhance fluorescence intensity of carbon dots has become a great challenge. Herein, we report for the first time a new strategy to synthesize fluorescent carbon dots (C-dots) with high quantum yields by using ribonuclease A (RNase A) as a biomolecular templating agent under microwave irradiation. The synthesized RNase A-conjugated carbon dots (RNase A@C-dots) exhibited quantum yields of 24.20%. The fluorescent color of the RNase A@C-dots can easily be adjusted by varying the microwave reaction time and microwave power. Moreover, the emission wavelength and intensity of RNase A@C-dots displayed a marked excitation wavelength-dependent character. As the excitation wavelength alters from 300 to 500 nm, the photoluminescence (PL) peak exhibits gradually redshifts from 450 to 550 nm, and the intensity reaches its maximum at an excitation wavelength of 380 nm. Its Stokes shift is about 80 nm. Notably, the PL intensity is gradually decreasing as the pH increases, almost linearly dependent, and it reaches the maximum at a pH = 2 condition; the emission peaks also show clearly a redshift, which may be caused by the high activity and perfective dispersion of RNase A in a lower pH solution. In high pH solution, RNase A tends to form RNase A warped carbon dot nanoclusters. Cell imaging confirmed that the RNase A@C-dots could enter into the cytoplasm through cell endocytosis. 3D confocal imaging and transmission electron microscopy observation confirmed partial RNase A@C-dots located inside the nucleus. MTT and real-time cell electronic sensing (RT-CES) analysis showed that the RNase A@C-dots could effectively inhibit the growth of MGC-803 cells. Intra-tumor injection test of RNase A@C-dots showed that RNase A@C-dots could be used for imaging in vivo gastric cancer cells. In conclusion, the as-prepared RNase A@C-dots are suitable for simultaneous therapy and in vivo fluorescence imaging of nude mice loaded with gastric cancer or other tumors.
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science
Reference38 articles.
1. Xu X, Ray R, Gu Y, Ploehn HJ, Gearheart L, Raker K, Scrivens WA: Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 2004, 126: 12736–12737. 10.1021/ja040082h
2. Baker SN, Baker GA: Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed 2010, 49: 6726–6744. 10.1002/anie.200906623
3. Li H, Kang Z, Liu Y, Lee S-T: Carbon nanodots: synthesis, properties and applications. J Mater Chem 2012, 22: 24230–24253. 10.1039/c2jm34690g
4. Xu M, Li Z, Zhu X, Hu N, Wei H, Yang Z, Zhang Y: Hydrothermal/solvothermal synthesis of graphene quantum dots and their biological applications. Nano Biomed Eng 2013, 5: 65–71.
5. Wang K, Gao Z, Gao G, Wo Y, Wang Y, Shen G, Cui D: Systematic safety evaluation on photoluminescent carbon dots. Nanoscale Res Lett 2013, 8: 1–9. 10.1186/1556-276X-8-1
Cited by
51 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献