Author:
Wang Nengwen,Yang Yuhua,Yang Guowei
Abstract
Abstract
ZnO nanoparticle array has been fabricated on the Si substrate by a simple thermal chemical vapor transport and condensation without any metal catalysts. This ZnO nanoparticles array is constructed from ZnO quantum dots (QDs), and half-embedded in the amorphous silicon oxide layer on the surface of the Si substrate. The cathodoluminescence measurements showed that there is a pronounced blue-shift of luminescence comparable to those of the bulk counterpart, which is suggested to originate from ZnO QDs with small size where the quantum confinement effect can work well. The fabrication mechanism of the ZnO nanoparticle array constructed from ZnO QDs was proposed, in which the immiscible-like interaction between ZnO nuclei and Si surface play a key role in the ZnO QDs cluster formation. These investigations showed the fabricated nanostructure has potential applications in ultraviolet emitters.
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science
Reference33 articles.
1. Huang MH, Mao S, Feick H, Yan HQ, Wu YY, Kind H, Weber E, Russo R, Yang PD: Room-temperature ultraviolet nanowire nanolasers. Science 2001, 292: 1897. 10.1126/science.1060367
2. Heo YW, Norton DP, Tien LC, Kwon Y, Kang BS, Ren F, Pearton SJ, LaRoche JR: ZnO nanowire growth and devices. Mater Sci Eng R 2004, 47: 1. 10.1016/j.mser.2004.09.001
3. Zeng HB, Duan GT, Li Y, Yang SK, Xu XX, Cai WP: Blue luminescence of ZnO nanoparticles based on non-equilibrium processes: defect origins and emission controls. Adv Funct Mater 2010, 20: 561. 10.1002/adfm.200901884
4. Yu H, Li JB, Loomis RA, Gibbons PC, Wang LW, Buhro WE: Cadmium selenide quantum wires and the transition from 3D to 2D confinement. J Am Chem Soc 2003, 125: 16168. 10.1021/ja037971+
5. Wu MK, Shih YT, Chen MJ, Yang JR, Shiojiri M: ZnO quantum dots embedded in a SiO2 nanoparticle layer grown by atomic layer deposition. Phys Status Solidi RRL. 2009, 3: 88.
Cited by
50 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献