Author:
Hotowy Anna,Sawosz Ewa,Pineda Lane,Sawosz Filip,Grodzik Marta,Chwalibog André
Abstract
Abstract
Nanoparticles of colloidal silver (AgNano) can influence gene expression. Concerning trials of AgNano application in poultry nutrition, it is useful to reveal whether they affect the expression of genes crucial for bird development. AgNano were administered to broiler chickens as a water solution in two concentrations (10 and 20 ppm). After dissection of the birds, breast muscles and hearts were collected. Gene expression of FGF2 and VEGFA on the mRNA and protein levels were evaluated using quantitative polymerase chain reaction and enzyme-linked immunosorbent assay methods. The results for gene expression in the breast muscle revealed changes on the mRNA level (FGF2 was up-regulated, P < 0.05) but not on the protein level. In the heart, 20 ppm of silver nanoparticles in drinking water increased the expression of VEGFA (P < 0.05), at the same time decreasing FGF2 expression both on the transcriptional and translational levels. Changes in the expression of these genes may lead to histological changes, but this needs to be proven using histological and immunohistochemical examination of tissues. In general, we showed that AgNano application in poultry feeding influences the expression of FGF2 and VEGFA genes on the mRNA and protein levels in growing chicken.
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science
Reference51 articles.
1. Singh N, Manshian B, Jenkins GJ, Griffiths SM, Williams PM, Maffeis TG, Wright CJ, Doak SH: NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials 2009, 30: 3891–3914. 10.1016/j.biomaterials.2009.04.009
2. Ahamed M, Karns M, Goodson M, Rowe J, Hussain SM, Schlager JJ, Hong Y: DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. ToxicolApplPharmacol 2008, 233: 404–410.
3. Sawosz E, Grodzik M, Lisowski P, Zwierzchowski L, Niemiec T, Zielińska M, Szmidt M, Chwalibog A: Influence of hydrocolloids of Ag, Au, and Ag/Cu alloy nanoparticles on the inflammatory state at transcriptional level. Bull Vet Inst Pulawy 2010, 54: 81–85.
4. Bhol KC, Schechter PJ: Topical nanocrystalline silver cream suppresses inflammatory cytokines and induces apoptosis of inflammatory cells in a murine model of allergic contact dermatitis. Br J Dermatol 2005, 152: 1235–1242. 10.1111/j.1365-2133.2005.06575.x
5. Bhol KC, Schechter PJ: Effects of nanocrystalline silver (NPI 32101) in a rat model of ulcerative colitis. Digestive Dis Sci 2007, 52: 2732–2742. 10.1007/s10620-006-9738-4
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Impact of silver nanoparticles (Ag-NPs) as a dietary supplement on growth performance, carcass traits, blood metabolites, digestive enzymes, and cecal microbiota of growing rabbits;Annals of Animal Science;2024-02-27
2. Silver-Silica nanoparticles induced dose-dependent modulation of histopathological, immunohistochemical, ultrastructural, proinflammatory, and immune status of broiler chickens;BMC Veterinary Research;2022-10-04
3. In ovo nano-silver and nutrient supplementation improves immunity and resistance against Newcastle disease virus challenge in broiler chickens;Frontiers in Veterinary Science;2022-09-16
4. Molecular Biocompatibility of a Silver Nanoparticle Complex with Graphene Oxide to Human Skin in a 3D Epidermis In Vitro Model;Pharmaceutics;2022-07-01
5. In ovo Inoculation of Bacillus subtilis and Raffinose Affects Growth Performance, Cecal Microbiota, Volatile Fatty Acid, Ileal Morphology and Gene Expression, and Sustainability of Broiler Chickens (Gallus gallus);Frontiers in Nutrition;2022-05-31