Author:
Lee Youngseok,Gong Daeyeong,Balaji Nagarajan,Lee Youn-Jung,Yi Junsin
Abstract
Abstract
Double stack antireflection coatings have significant advantages over single-layer antireflection coatings due to their broad-range coverage of the solar spectrum. A solar cell with 60-nm/20-nm SiNX:H double stack coatings has 17.8% efficiency, while that with a 80-nm SiNX:H single coating has 17.2% efficiency. The improvement of the efficiency is due to the effect of better passivation and better antireflection of the double stack antireflection coating. It is important that SiNX:H films have strong resistance against stress factors since they are used as antireflective coating for solar cells. However, the tolerance of SiNX:H films to external stresses has never been studied. In this paper, the stability of SiNX:H films prepared by a plasma-enhanced chemical vapor deposition system is studied. The stability tests are conducted using various forms of stress, such as prolonged thermal cycle, humidity, and UV exposure. The heat and damp test was conducted for 100 h, maintaining humidity at 85% and applying thermal cycles of rapidly changing temperatures from -20°C to 85°C over 5 h. UV exposure was conducted for 50 h using a 180-W UV lamp. This confirmed that the double stack antireflection coating is stable against external stress.
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献