Author:
Moon Jihyun,Baik Seung Jae,O Byungsung,Lee Jeong Chul
Abstract
Abstract
The emergence of third-generation photovoltaics based on Si relies on tunable bandgap materials with embedded nanocrystalline Si. One of the most promising approaches is based on the mixed-phase Si1 − x
C
x
. We have investigated the light absorption controllability of nanocrystalline Si-embedded Si1 − x
C
x
produced by thermal annealing of the Si-rich Si1 − x
C
x
and composition-modulated superlattice structure. In addition, stoichiometric SiC was also investigated to comparatively analyze the characteristic differences. As a result, it was found that stoichiometric changes of the matrix material and incorporation of oxygen play key roles in light absorption controllability. Based on the results of this work and literature, a design strategy of nanocrystalline Si-embedded absorber materials for third-generation photovoltaics is discussed.
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献