Author:
Asif Safi Asim Bin,Khan Sher Bahadar,Asiri Abdullah M
Abstract
Abstract
A Co3O4/Fe2O3 composite nanofiber-based solar photocatalyst has been prepared, and its catalytic performance was evaluated by degrading acridine orange (AO) and brilliant cresyl blue (BCB) beneath solar light. The morphological and physiochemical structure of the synthesized solar photocatalyst was characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FTIR). FESEM indicates that the Co3O4/Fe2O3 composite has fiber-like nanostructures with an average diameter of approximately 20 nm. These nanofibers are made of aggregated nanoparticles having approximately 8.0 nm of average diameter. The optical properties were examined by UV-visible spectrophotometry, and the band gap of the solar photocatalyst was found to be 2.12 eV. The as-grown solar photocatalyst exhibited high catalytic degradation in a short time by applying to degrade AO and BCB. The pH had an effect on the catalytic performance of the as-grown solar photocatalyst, and it was found that the synthesized solar photocatalyst is more efficient at high pH. The kinetics study of both AO and BCB degradation indicates that the as-grown nanocatalyst would be a talented and efficient solar photocatalyst for the removal of hazardous and toxic organic materials.
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science
Reference28 articles.
1. Khan SB, Lee J-W, Marwani HM, Akhtar K, Asiri AM, Seo J, Khan AAP, Han H: Polybenzimidazole hybrid membranes as a selective adsorbent of mercury. Compos B 2014, 56: 392–396.
2. Khan SB, Faisal M, Rahman MM, Jamal A: Exploration of CeO2 nanoparticles as a chemi-sensor and photo-catalyst for environmental applications. Sci Tot Environ 2011, 409: 2987–2992. 10.1016/j.scitotenv.2011.04.019
3. Khan SB, Faisal M, Rahman MM, Jamal A: Low-temperature growth of ZnO nanoparticles: photocatalyst and acetone sensor. Talanta 2011, 85: 943–949. 10.1016/j.talanta.2011.05.003
4. Jain RK, Kapur M, Labana S, Lal B, Sharma PM, Bhattacharya D, Thakur IS: Microbial diversity: application of microorganisms for the biodegradation of xenobiotics. Curr Sci 2005, 89: 101–112.
5. Lin W-C, Chen C-H, Tang H-Y, Hsiao Y-C, Pan JR, Hu C-C, Huang C: Electrochemical photocatalytic degradation of dye solution with a TiO2-coated stainless steel electrode prepared by electrophoretic deposition. Appl Catal B Environ 2013, 140–141: 32–41.
Cited by
71 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献