Author:
Wu Jianyang,He Jianying,Odegard Gregory M,Zhang Zhiliang
Abstract
Abstract
Polymeric particles with controlled internal molecular architectures play an important role as constituents in many composite materials for a number of emerging applications. In this study, classical molecular dynamics techniques are employed to predict the effect of chain architecture on the compression behavior of nanoscale polyethylene particles subjected to simulated flat-punch testing. Cross-linked, branched, and linear polyethylene chain architectures are each studied in the simulations. Results indicate that chain architecture has a significant influence on the mechanical properties of polyethylene nanoparticles, with the network configuration exhibiting higher compressive strengths than the branched and linear architectures. These findings are verified with simulations of bulk polyethylene. The compressive stress versus strain profiles of particles show four distinct regimes, differing with that of experimental micron-sized particles. The results of this study indicate that the mechanical response of polyethylene nanoparticles can be custom-tailored for specific applications by changing the molecular architecture.
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science
Reference35 articles.
1. Donnellan TM, Roylance D: Relationships in a bismaleimide resin system. Part II: thermomechanical properties. Polym Eng Sci 1992, 32(6):415–420. 10.1002/pen.760320605
2. Lu J, Wool RP: Sheet molding compound resins from soybean oil: thickening behavior and mechanical properties. Polym Eng Sci 2007, 47(9):1469–1479. 10.1002/pen.20846
3. Thompson JI, Czernuszka JT: The effect of two types of cross-linking on some mechanical properties of collagen. Biomed Mater Eng 1995, 5(1):37–48.
4. Sun JY, Zhao XH, IlleperumaW RK, Chaudhuri O, Oh KH, Mooney DJ, Vlassak JJ, Suo ZG: Highly stretchable and tough hydrogels. Nature 2012, 489: 133–136. 10.1038/nature11409
5. Lok KP, Ober CK: Particle size control in dispersion polymerization of polystyrene. Can J Chem 1985, 63(1):209–216. 10.1139/v85-033
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献