Interface coupling-induced enhancement of magnetoimpedance effect in heterogeneous nanobrush by adjusting textures of Co nanowires

Author:

Zhang Yi,Dong Juan,Sun Xiaojun,Liu Qingfang,Wang Jianbo

Abstract

Abstract Interface coupling-induced and interface coupling-enhanced magnetoimpedance (MI) effect in heterogeneous nanobrush has been investigated. The nanobrush is composed of Fe25Ni75 nanofilm and textured hexagonal close-packed cobalt nanowire array, respectively fabricated by RF magnetron sputtering and electrochemical deposition. The design of this structure is based on the vortex distribution of magnetic moments in thin film, which can be induced by the exchange coupling effect at the interfaces of the nanobrush. The texture of nanowires plays an important role in the MI effect of the nanobrush, which is regulated by controlling the pH values and temperatures of the deposition process. The ‘parallel’ and ‘perpendicular’ coupling models were used to explain the different MI results of the nanobrush with cobalt nanowires, which have (100) and (002) textures, respectively. The optimized MI effect of the nanobrush brought by (100) nanowires can be magnified by 300% with more than 80%/Oe magnetic sensitivity at a low frequency, which has great application potentials in low-frequency MI sensors.

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nickel nanobrush platform for a magnetic field-assisted electrochemical response enhancement;Journal of Science: Advanced Materials and Devices;2022-09

2. Effect of pH and Boric Acid on Magnetic Properties of Electrodeposited Co Nanowires;Proceedings of the National Academy of Sciences, India Section A: Physical Sciences;2020-08-14

3. Parallel-line number dependence of magneto-impedance effect in multilayer permalloy [Ni80Fe20/Cu]Nfilms;Journal of Physics: Conference Series;2017-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3