Author:
Ramiro-Manzano Fernando,Fenollosa Roberto,Xifré-Pérez Elisabet,Garín Moises,Meseguer Francisco
Abstract
Abstract
We have recently developed a new type of porous silicon we name as porous silicon colloids. They consist of almost perfect spherical silicon nanoparticles with a very smooth surface, able to scatter (and also trap) light very efficiently in a large-span frequency range. Porous silicon colloids have unique properties because of the following: (a) they behave as optical microcavities with a high refractive index, and (b) the intrinsic photoluminescence (PL) emission is coupled to the optical modes of the microcavity resulting in a unique luminescence spectrum profile. The PL spectrum constitutes an optical fingerprint identifying each particle, with application for biosensing.
In this paper, we review the synthesis of silicon colloids for developing porous nanoparticles. We also report on the optical properties with special emphasis in the PL emission of porous silicon microcavities. Finally, we present the photonic barcode concept.
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science
Reference27 articles.
1. Sze SM: Physics of Semiconductor Devices. 2nd edition. Hoboken: Wiley; 1981.
2. Streetman BG, Banerjee S: Solid State Electronic Devices. New Jersey: Prentice Hall Series in Sol State Electronics; 2000.
3. Miller D: A sound barrier for silicon? Nat Mater 2005, 4: 645. 10.1038/nmat1466
4. Song BS, Noda S, Asano T, Akahane Y: Ultra-high-Q photonic double-heterostructure nanocavity. Nat Mater 2005, 4: 207. 10.1038/nmat1320
5. Blanco A, Chomski E, Grabtchak S, Ibisate M, John S, Leonard SW, Lopez C, Meseguer F, Miguez H, Mondia JP, Ozin GA, Toader O, Van Driel H: Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres. Nature 2000, 405: 437. 10.1038/35013024
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献