Author:
Li Jiani,Yu Kejing,Qian Kun,Cao Haijian,Lu Xuefeng,Sun Jie
Abstract
Abstract
A method for situ preparing a hybrid material consisting of silica nanoparticles (SiO2) attached onto the surface of functionalized graphene nanoplatelets (f-GNPs) is proposed. Firstly, polyacrylic acid (PAA) was grafted to the surface of f-GNPs to increase reacting sites, and then 3-aminopropyltriethoxysilane (APTES) KH550 reacted with abovementioned product PAA-GNPs to obtain siloxane-GNPs, thus providing reaction sites for the growth of SiO2 on the surface of GNPs. Finally, the SiO2/graphene nanoplatelets (SiO2/GNPs) hybrid material is obtained through introducing siloxane-GNPs into a solution of tetraethyl orthosilicate, ammonia and ethanol for hours' reaction. The results from Fourier transform infrared spectroscopy (FTIR) showed that SiO2 particles have situ grown on the surface of GNPs through chemical bonds as Si-O-Si. And the nanostructure of hybrid materials was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). All the images indicated that SiO2 particles with similar sizes were grafted on the surface of graphene nanoplatelets successfully. And TEM images also showed the whole growth process of SiO2 particles on the surface of graphene as time grows. Moreover, TGA traces suggested the SiO2/GNPs hybrid material had stable thermal stability. And at 900°C, the residual weight fraction of polymer on siloxane-GNPs was about 94.2% and that of SiO2 particles on hybrid materials was about 75.0%. However, the result of Raman spectroscopy showed that carbon atoms of graphene nanoplatelets became much more disordered, due to the destroyed carbon domains during the process of chemical drafting. Through orthogonal experiments, hybrid materials with various sizes of SiO2 particles were prepared, thus achieving the particle sizes controllable. And the factors’ level of significance is as follows: the quantity of ammonia > the quantity of tetraethyl orthosilicate (TEOS) > the reaction time.
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献