Author:
Mercatelli Luca,Sani Elisa,Giannini Annalisa,Di Ninni Paola,Martelli Fabrizio,Zaccanti Giovanni
Abstract
Abstract
The full characterization of the optical properties of nanofluids consisting of single-wall carbon nanohorns of different morphologies in aqueous suspensions is carried out using a novel spectrophotometric technique. Information on the nanofluid scattering and absorption spectral characteristics is obtained by analyzing the data within the single scattering theory and validating the method by comparison with previous monochromatic measurements performed with a different technique. The high absorption coefficient measured joint to the very low scattering albedo opens promising application perspectives for single-wall carbon nanohorn-based fluid or solid suspensions. The proposed approximate approach can be extended also to other low-scattering turbid media.
PACS: 78.35.+c Brillouin and Rayleigh scattering, other light scattering; 78.40.Ri absorption and reflection spectra, fullerenes and related materials; 81.05.U- carbon/carbon-based materials; 78.67.Bf optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures, nanocrystals, nanoparticles, and nanoclusters.
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science
Reference17 articles.
1. Iijima S, Yudasaka M, Yamada R, Bandow S, Suenaga K, Kokai F, Takahashi K: Nano-aggregates of single-walled graphitic carbon nano-horns. Chem Phys Letters 1999, 309: 165–170. 10.1016/S0009-2614(99)00642-9
2. Murata K, Kaneko K, Kokai F, Takahashi K, Yudasaka M, Iijima S: Pore structure of single-wall carbon nanohorn aggregates. Chem Phys Letters 2000, 331: 14–20. 10.1016/S0009-2614(00)01152-0
3. Yudasaka M, Iijima S, Crespi VH: Single-wall carbon nanohorns and nanocones. In Carbon Nanotubes Topics in Applied Physics. Volume 111. Edited by: Jorio A, Dresselhaus G, Dresselhaus MS. Berlin/Heidelberg: Springer; 2008:605–629.
4. Fan X, Tan J, Zhang G, Zhang F: Isolation of carbon nanohorn assemblies and their potential for intracellular delivery. Nanotechnology 2007, 18: 195103. 10.1088/0957-4484/18/19/195103
5. Bekyarova E, Murata K, Yudasaka M, Kasuya D, Iijima S, Tanaka H, Kahoh H, Kaneko K: Single-wall nanostructured carbon for methane storage. J Phys Chem B 2003, 107: 4682–4684.
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献